Hands-on
Azure Functions
with C#

Build Function as a Service (FaaS) Solutions

Ashirwad Satapathi
Abhishek Mishra

ApPress

Hands-on Azure
Functions with C#

Build Function as a Service (FaaS)
Solutions

Ashirwad Satapathi
Abhishek Mishra

Apress’

Hands-on Azure Functions with C#: Build Function as a Service (FaaS) Solutions

Ashirwad Satapathi Abhishek Mishra
Gajapati, Odisha, India Mumbai, Maharashtra, India
ISBN-13 (pbk): 978-1-4842-7121-6 ISBN-13 (electronic): 978-1-4842-7122-3

https://doi.org/10.1007/978-1-4842-7122-3

Copyright © 2021 by Ashirwad Satapathi and Abhishek Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7121-6. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7122-3

This book is dedicated to my father, Mr. Upendra Satapathi,
and mother, Mrs. Sabita Panigrahi, for supporting me through
each and every phase of my life. Without your support I wouldn’t
have been able to complete this book.

—Ashirwad Satapathi

This book is dedicated to my super dad, Mr. Balabhardra Mishra,
and loving mom, Mrs. Pragyan Mishra.

—Abhishek Mishra

Table of Contents

About the AUtROrS........ccusmmismmmssnmmsasmssanmsnssssssasssass s sansssassssnsssansssansssansnas Xiii
About the Technical REVIEWETccusurssassssnssssnsssassssnsssasssssssssssssasssssssssnsssansssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
L1 T LT (1 Xix
Chapter 1: Introduction to Azure FUNClionS........ccccvussseensrsssssnnsnsssssssssssssssnsssssssnnnsssss 1
Structure of the CRAPIEN ... ————————— 1
(00T 1) TSRS 2
Introduction t0 AZUre FUNCTIONScoeeciienriisenese s s sessesssnnnens 2
INtroduCtion t0 SEIVEIIESS........cuiirererirrec s 3
Azure WebJobs vS. AZUre FUNCLIONScoviieininrisssse s se s sssssesens 4
Advantages and Disadvantages of Azure FUNCHIONSccccocvvervenirinsense e s 5
Hosting Plans for Azure FUNCHIONS ... s s 6
CoNSUMPLION PIAN.......ccoiieceeirer e b e e b e nne s 7
Premitm PIaN.........oooccecsse iR 7
DediCated PIaNcccvuecerieerincsin s 8
Use Cases for AZUre FUNCLIONS.........covieinenensss s s sssesssssssns 8
£ 11114 7S 9
Chapter 2: Build Your First Azure FUnctionc.ccuseemmissssnsnnnssssssnsnsssssssssssssssnsnss 11
Structure of the ChAPIEN ..o ——————— 11
(00T 1) SRR 12
Create Functions Using the Azure POral.............ccovevnennesnnssnesese s sessesessenens 12
Create Functions Locally Using the Command Line..........cccvrvvrvrieniennnnsenienienessessessesessessessenns 23

TABLE OF CONTENTS

Create Functions Using Visual Studio COEcccvreverrerrerernnenseresessssessesesssssssessessessssessessenes 28
Create Functions Using Visual STUAIOcccoveeererrnicriresersse s sessesesse e ssssesessenens 34
SUIMIMAIY....eeeeeeee e e e e s ae e e e s e e e e e Re e s e e e se e e e nRe e e re e nennnnnnnnens 40
Chapter 3: What Are Triggers and Bindings?.......cccccuerrmsssssssssmmmsmmssssssssssssssssesssssnas 41

Structure of the ChAPIEN ... —————— 41
ODJECHIVES w.uvvierrresrrrese e e R e e e R e e e n e 42
Introduction to Triggers and BindiNgSccocevvrrrrieninnennenrene s sese s s ssesessessesnes 42
Supported Triggers and BiNAINGS........cucvvererereririerienssessese e sessessessessssessessesssssssessessessssessesseses 44
Trigger and BindiNg USE CASEScccvererirerinerinenisssess e sesseses s ses e ssssesessssesss s stssssessssesenaes 46

Use Case: An Azure function gets triggered when a message arrives in a queue,

and the processed message is put into another qUeUE ..o, 47

Use Case: A scheduled job picks up images for Blob Storage at a particular time

interval and then processes and stores them back in the Blob Storage..........ccecveevvveriernene. 48

Use Case: An HTTP call invokes an Azure function to execute some business logic............. 48

Use Case: An event grid can invoke an Azure function to send an email with

BVENT UALA......ceoeeierce s 49

Use Case: RabbitMQ triggers an Azure function that processes the message sent

by RabbhitMQ and puts the processed message in Azure Cosmos DB.............cccceerirerniennn 50
Implement Triggers and Bindings for Azure FUNCLIONS ... 50
SUIMIMAIY ...t n e ae e e e e e e e e Re e s s e e se e e e e Re e s ea e nen e e nrnnnns 61

Chapter 4: OTP Mailer with Queue Storage Trigger and SendGrid Binding............. 63

Structure of the ChapIer ... 63
(00 =T RS 64
Getting Started with a Queue Storage Trigger and Use Cases........cccuuvrvvernnenesenesnsesensesesenens 64
Build a Sample Application Using a Queue Storage THOGErcc.ccvvvrnenneserinsesensesesesesessesens 65
Getting Started with a SendGrid Output Binding and Use Casescccccrirvnnsnrcnesnsessensenns 77
Build a Sample Application Using the SendGrid OQutput Binding........cccccovevvrinnininccnnnenicnennn, 78
Create an OTP Mailer Using a Queue Storage Trigger and SendGrid
OUEPUL BINGING c..evevecieerere s sa e s sa e sae e s ae s a e a e e aesae e e e e nnene 88
E 1] 4= 7R 90

TABLE OF CONTENTS

Chapter 5: Build a Report Generator with a Timer Trigger and

Blob Storage Bindings.......ccccuussmemmmssssssnmmssssnsnssssssssnssssssnnnssssssnsnsssssnnnnss 91

Structure of the CRAPIEN ..o ————— 92
(00T 1) SRRSO 92
Getting Started with Timer Triggers and USE CasesS........ccvverererrerieressssessesesssessessessessssessessenes 92
Build a Sample Application Using @ TIMEr THQQET ...eevveererreriereserrereresessessessessssessessessessssessesses 94
Getting Started with Blob Storage Bindings and Use Cases........cccvmverrnrernsesensesesssesensesenns 106
Build a Sample Function Using a Blob Storage Binding..........cccccvvnininnnnnnnnnnsnncncssnsensennens 107
Create a Report Generator Using a Blob Storage Binding and Timer Trigger.........ccccoeveervecene. 112
SUMIMAIY....ceieerieesere s s e e e e e R e R e e e e R e e e e e nRe e e R e e ne e e e nns 123
Chapter 6: To-Do APl with an HTTP Trigger and a Table Storage Binding............. 125
Structure of the CRAPIETcvcvcre e e eaen 125
L08R 126
Getting Started with HTTP Triggers and USe Casesccuvvrerrnnernsesenesesssessssesessssessssesenns 126
Build a Sample Application Using an HTTP Trgger........cccvvinnnniniennsinsene s sessesessessssessessens 127
Routing in HTTP-Triggered Azure FUNCLIONS..........ccoverrermrenerese e sesse s 132
Getting Started with Table Storage Bindings and Use Cases........c.cceuvrrrieriennsensessessnsensessenss 135
Build a Sample Application Using a Table Storage Binding..........ccccveevvvninieninnnsensensenensensenens 136
Create a To-Do API with an HTTP Trigger and a Table Storage Binding..........c.cooevveriernrerseriennen 141
£ 1134 7 146
Chapter 7: Creating Custom Bindings for Azure Functionscccssusssnenssssssnnnnns 147
Structure of the CRAPIEN ... ——————————— 147
00T 1) TS 148
Introduction to Custom BindiNgS..........ccuiveernenerinnnsessessse s sessesenns 148
Use Cases for CUStOm BiNGiNGScccvvvveriereninnenieners s sessesesessssessesessssessessessessssessesnens 148
Build a Custom Binding for AZUre FUNCLIONS.........ccocerererrereresesseseressssessesessesessessessessssessensens 149
Create an Azure FUNCHION ... 151
Implement the Binding Attribute Class..........covrrinennnnnnss s 153
Implement the Binding LOGIC ClaSSc.ccvvrerverernnensersesessssessesesssssssesessessssessessesssssssessenes 157
Implement the Binding EXtension Classc.cunnnnnssess s 159

vii

TABLE OF CONTENTS

Implement the Binding Startup Class........cccvvrrerernnrieriennsinseressssessese e sessessessessssessessees 160
Incorporate the Binding in the Azure FUNCHION ... 161
31111117 OSSO 164
Chapter 8: Building Serverless APIs Using Azure Functions and Azure SQOL........ 165
Structure of the CRAPIEN ... —————————— 166
L0 1) S 166
Problem Statement ... ——————————— 166
Creating an Azure SQL Database Instance in the Azure Portal...........ccccvevverienninseniennsenseniennns 168
Building Serverless APIs for the Proof of CONCEPLcceccveriererrerieriesssensesessesessesessesessesesaens 173
Testing the Serverless APIs for the Proof of Concept........ccvvvninninninsninicsns e 194
SUMIMANY ..ttt e b e e e e e R e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 201
Chapter 9: Serverless APl Using Azure Functions and Azure Cosmos DB............ 203
Structure of the CRAPIEN ..o ———————— 203
ODJECHIVES ...ueveerrrecsirre e e e b e e r e 204
Introduction to Azure Cosmos DB and ItS USE CaSEScocvrmremnmseresmssssssessssssssssesesssssneaes 204
Getting Started with Azure Function Cosmos DB Triggers by Building a
Simple APPHCALIONveeeerc e —————— 206
Build an HTTP-Triggered Azure Function to Perform CRUD Operations on Azure
CoSmMOS DB USING BINAINGScccueerrrrmrerenerrenesessesssssessssesessesessnns 222
Leverage the Azure Cosmos DB SDK to Interact with Cosmos DB from Azure Functions......... 226
£ 11134 OO 231

Chapter 10: Enabling Application Insights and Azure Monitor..........ccccccnnriisnnnnn 233

Structure of the CRAPIETcv v s naen 233
L0 1) 234
Enable Logging Using Application INSIgNtScovrrrerrenrerercre e 234
Perform Diagnostics for Azure FUNCHIONS..........ccocoereeernninenesersse e 244
Monitor Azure Functions and Create AlertS...........cvvvrnrerenesesnse s sessesenns 249
Restrict the Number of Scaling Instances for the Azure FUNction Appcccveevrvrirevenienienens 259
£ 11134 P 260

viil

TABLE OF CONTENTS

Chapter 11: Storing Function Secrets in Azure Key Vaultcccevssnnnnnnnsssnnnnns 263
Structure 0f the ChaPLEN ... 264
(00T 1 T OSSPSR 264
Getting Started with Azure Key Vault ... 264
Create an Azure Key Vault in the Azure Portal...........cccoceevninnenmnnsnnsssesess s 265
Store Secrets in Key VaUIL..........ccoevvririnienn e sene s se e s s sss e s saessssessesaesnes 271
Create an Azure Function in the Azure Portal.............ccccovnrnniicnnnnsesssese s 274
Add an Access Policy for Azure Key Vault...........cccceoeveririnneninirrensee s essesssessessenns 284
SUMIMANY ..ttt e s s R e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 287

Chapter 12: Authentication and Authorization Using Azure Active Directory 289
Structure of the CRAPIEN ..o ——————— 289
(00T 1) SO S 290
What IS AZure ACtIVE DIrECIOIY?ccvceriererr s s s e sne e 290
What Are Authentication and Authorization?............ccocovinnnnnssr s 291
Implement Authentication and Authentication for Azure Functions Using Azure
ACHIVE DIFECTOIY....cvicerertec et s b e b e s b e e e nne s 292
£ 1117 S 312

Chapter 13: Securing Azure Functions with APl Management...........coossseeennnnnnnas 315
Structure of the CRAPIENccvc 315
L0 0 =T TR 316
What Is the APl Management SEIVICE?ccvvvrrrererrrrerseressesessessessessssessessessessssessessesssssssessenes 316
Advantages of Using the APl Management SErviCecocvnerrnnrnsnnnesenne s sessesessesesennes 316
Integrate APl Management with Azure FUNCLIONSccoccvnevncnincnnsne s 317
£ 11T o S 337

Chapter 14: Deploying Your Azure Functions Using IDESccuccummnsssnnnsmsssssnnnss 339
Structure of the CRAPIENccvc 339
[0 0 =T (1 R 340
Deploy an Azure Function to Azure Using Visual Studio 2019........ccccoevvrvrrerennsersesenessensenens 340
What Are Deployment SIOtS?.......ccovciicrninnesnne s e 352

ix

TABLE OF CONTENTS

Deploy an Azure Function to Deployment SIOLScccvvvvrieriennsnieniens s sessesessessssessessens 352
Deploy an Azure Function to Azure Using VS COdEccccvvvrrnrnnenninnennnsersesesse s sessesens 362
SUMIMANY ..ttt b e e e e e bR e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrn 371
Chapter 15: Deploying Your Azure Functions Using a CI/CD Pipeline with

AZUre DEVOPS ...ccvisemmnmmssssnnnmmssssnnnsssssssnnsesssssnnsssssssnnnssssssnnnsssssnnnnssssnnns 373
Structure of the CRAPIEov v eaes 374
L08R 374
What IS AZUFE DEVOPS?cveerircriresirieesis et ses et s e s s et s se s e s st sesae e sse e sesnessnnnaens 374
Create a Project in AZUre DEVOPS ... 377
Create a Build Pipeline in Azure DevOps and Enable Continuous Integration...........c.cccovuene.. 378
Create a Release Pipeline in Azure DevOps and Enable Continuous Delivery........c..cccevierenne. 388
BT 11134 RS 399

Chapter 16: Running Azure Functions in Containers.......cc.ucccnnmnsssennsnsssssnsssssssnnnss 401

Structure of the CRAPIETcvcvire e e nnen 401
00T 1) 402
Getting Started with Containers and AKS............corrrnrrrere e 402
What Is Serverless Kubernetes and KEDA in AZUI?.........ccceeeernverennenenesesessesesssesesesessesesssnens 404
Containerize Azure Functions and Push Them to the Azure Container Registrycccccvcvuenee. 405
Deploy the Containerized Azure Functions in AKS Using KEDA.........cccccvvrirnnnnnienenensensenens 412
£ 11134 7R 419
Chapter 17: Adding Cognitive Capabilities to Your Azure Functionsccusseeenes 421
Structure 0f the ChaPLEr ... 421
00T () T 422
Getting Started with Azure Cognitive SErVICESccvvrrnrrnneseres s 422
Getting Started with Azure Text AN@IYEICSccoveevrvrenris s 423
Create an Azure Text Analytics Resource in the Azure Portal........c.ccocevvvvverievnsensenienesensensennes 424
Build a Serverless API to Analyze Feedback Using Sentiment Analysis........cccocvvrverierenseriennens 428
Test the FeedbackAnalyzer Function Using PoStmancccoccerrvnvnnenensennee s sesses e ssesennas 435
Build a Language-Based Document Classifier Serverless Solution..........ccccevevvrvrreenerienienns 437

TABLE OF CONTENTS

Test the Language-Based Document Classifier FUNCLONc.cccevrevvvnienienesensensesesessensessens 445
31111117 OO S 448
Chapter 18: Introduction to Azure Durable FUNctionsccccunssesmnsssssssssssssssnnns 449
Structure of the ChAPIEN ..o ———————— 449
00T 1) S 450
Getting Started with Azure Durable FUNCLIONSccccovcricnncs e 450
Benefits of Azure Durable FUNCLIONS.........c.coviinmnniis s 452
APPlICAtioN PALIBINS.......ccccicece s s 453
Fan-0ut @and Fan-In ... 453
FUNCEION CRAINING.....ccviererreririre s ses s e s s sae e s s sae s s e saesr e e e e saesaesas e naesaes 454
ASYNC HTTP APIS ..ottt s s e s a e s s 455
11101 (0] 1T 455

o (0 b T I LT = o 10 SN 456
D0 (< = (0] SRS 456
Implement an Azure Durable FUNCHION..........cco it 456

£ 011117 OO 467
Chapter 19: Integrating Azure Functions in a Logic Apps Workflowccuceeenss 469
Structure of the CRAPIE ..o ———————— 470
(00T 1) SO S 470
Getting Started With AZUre LOGIC APPS...cccererrrrrrererenersersessesssssssessessessssessessessssessessesssssssessesses 470
Create an Azure Logic Apps Solution in the Azure Portal..........cccccvvvevrvrierienssensensene s sesenns 471
Add Azure Functions in Logic Apps WOrKfIOWScccecririninininiencsnsene s sessennens 480
SUMIMAIY ..ttt b e e e R e e e e e R e R e b e e e Re e Re R e e e e e Re e b e e e e e Renrs 499
Chapter 20: Best Practices and Pitfalls to Avoid..........ccccussmmemmmmmnnnnnssssssssssnnnnnns 501
Structure of the CRAPIEN ... ————————— 501
ODJECHIVES ...eeveerrreeserre e e e e b e p e 501
Design Guidelines and Best PractiCes.......ccuvvrrrvriernninsenienesessesesessssessessessesessessessessssessessens 502
Decide to Use Functions or Not for Your SCENario...........ccovvrmnsnmsesenessnssssssesesssssssssenens 503
Choose the Correct Programing LangUage........cceevververiererennenseressssessessessesessessessessssessessees 504
Choice 0f HOSHING PIAN.........cccveriirririeresrr s s s s sae s se s sae s 505

TABLE OF CONTENTS

Pick a Stateful or Stateless SOIULION ... 506
Mitigate Delay STArtUPScccvcvierierrrre s s sae e e s sae e naennes 507
Get the Correct Bill to Fit YOur BUAQELccoverervnersere e ses e e ssssessesne s 508
Handle Long-RUnning COUE........ccvivrrvriererensersersessesessessessessssessessessssessessesssssssessesassssssssesses 508
Facilitate Integration and Communication Among Other Azure and External Services........ 509
Identify and Manage the BottenecksS.........cccvvrerenerrrieniennsensere s sessesessessssessesaees 509
Make Your Solution Fault TOIErant ... 510
Secure the APIs Developed Using Azure FUNCHIONSccccvvververennnensensesesessensessessssessessenns 511
Facilitate Efficient Monitoring and Debug Failures.........ccocvvvvrvenennsnienienssenseseseesessessenses 511
Incorporate DevOps Practices and Bring in an 1aC Approach..........ccccveevevvversenevensensenenns 511
Bring in a Defensive Programming APPrOaCh.........ccocveerererersersesessssensessessesessessesssssssessesses 512
Pitfalls 10 AVOIdcooeieiericerncr e s 512
Sharing Functions in a Single FUNction App SEIVICe........ccvcvvererrrerserieresessessesessesesesaens 513
Processing the Input Data One Piece at @ TIME.......ccvcrverernrnneniensserse s e sessennes 513
Hosting the Production and Development Functions in the Same Function
0TS o O 513
Sharing Storage Accounts Across FUNCLion ApPP SErVICES......ccvvvrrrreriererensensesessssessessenes 514
£ 1134 7P 514
1T - 517

xii

About the Authors

Ashirwad Satapathi works as a software developer with
aleading IT firm and has expertise in building scalable
applications with .NET Core. He has a deep understanding
of building full-stack applications using .NET Core along
with Azure Paa$ and serverless offerings. He is an active

blogger in the C# Corner developer community. He was
\""f J“,WI(F" “I.. \ awarded the C# Corner MVP in September 2020 for his

F“"f ||| I '“' i contributions to the developer community.
. . u. |||H|nn n

118 \| i

I ”l"u'l il

Abhishek Mishra is an architect with a leading
multinational software company and has deep expertise in
designing and building enterprise-grade intelligent Azure
and .NET-based architectures. He is an expert in .NET

full stack, Azure (PaaS, IaaS, serverless), infrastructure as
code, Azure machine learning, intelligent Azure (Azure
Bot Services and Cognitive Services), and robotics process
automation. He has a rich 15+ years of experience working

in top organizations in the industry. He loves blogging and
is an active blogger in the C# Corner developer community.
He was awarded the C# Corner MVP in December 2018,
December 2019, and December 2020 for his contributions to

the developer community.

xiii

About the Technical Reviewer

Carsten Thomsen is primarily a back-end developer but
works with smaller front-end bits as well. He has authored
and reviewed a number of books and created numerous
Microsoft Learning courses, all focused on software
development. He works as a freelancer/contractor in various
countries in Europe, using Azure, Visual Studio, Azure
DevOps, and GitHub. He is an exceptional troubleshooter,
asking the right questions in a most logical to least logical
fashion; he also enjoys working in the areas of architecture,

research, analysis, development, testing, and bug fixing.
Carsten is a good communicator with great mentoring and
team-lead skills and is skilled at researching and presenting

new material.

Acknowledgments

We would like to thank the Apress team for giving us the opportunity to work on this
book. Also thanks to the technical reviewer and the editors for helping us deliver this
manuscript.

Xvii

Introduction

Azure Functions is a function as a service (FaaS) offering on the Azure Platform. In
this book, you will explore Azure Functions in detail and learn how to work with Azure
Functions using a practical and example-based approach that will help you grasp the
subject with ease.

The book will start with the essential topics. You will learn how to set up the
application development environment for Azure Functions. Then you will get example-
based steps for building a serverless solution using a combination of bindings and
triggers in C#. The book will then dive into areas that will help you learn how to create
custom bindings, connect with various data sources, ingest telemetry data for Azure
Functions into Application Insights, and learn various ways to deploy the functions to
the Azure environment.

You will also explore advanced areas such as running Azure Functions in an Azure
Kubernetes Service cluster using Kubernetes Event Driven Autoscaling (KEDA). You will
learn the DevOps way of working with Azure Functions using Azure DevOps, as well as
the best practices you should follow while using Azure Functions.

This book provides production-like scenarios and provides labs that will deliver the
right set of hands-on experience. The practical approach in the book will help you gain
deep proficiency in the subject.

This book is intended for experienced developers, cloud architects, and tech
enthusiasts looking forward to building scalable and efficient serverless solutions using
Azure Functions. Anyone having a prior experience with C# and knowing the Azure
basics can use this book to start their journey in building serverless solutions with Azure
Functions.

Xix

CHAPTER 1

Introduction to Azure
Functions

Function as a service (FaaS) is getting more popular every day on all the major cloud
platforms. With FaaS, you can build small chunks of code that run for a short time and
host them on the Faa$S cloud offering. You get billed for the time your function runs, and
you do not need to bother about the hosting infrastructure and the scaling aspects.

Microsoft Azure provides Azure Functions as an FaaS$ offering. You build your
function code and host it on Azure Functions, part of Azure App Service. The underlying
platform takes care of all the hosting and scaling needs. Executing your code on Azure
Functions is cost-effective most of the time compared to other hosting services available
in the cloud.

In this chapter, you will get a basic understanding of Azure Functions that will help
you grasp the next set of chapters with ease.

Structure of the Chapter

In this chapter, we will explore the following aspects of Azure Functions:
e Introduction to Azure Functions
o Introduction to serverless
o Azure WebJobs vs. Azure Functions
e Advantages and disadvantages of Azure Functions
o Hosting plan for Azure Functions

e Use cases for Azure Functions

© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_1

https://doi.org/10.1007/978-1-4842-7122-3_1#DOI

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Objectives

After studying this chapter, you will be able to do the following:

e Understand the fundamentals of serverless computing and Azure
Functions

o Identify scenarios where you can use Azure Functions

Introduction to Azure Functions

Azure Functions is a serverless computing service on the Microsoft Azure platform and
is based on the FaaS computing model. You need to build your code, spin up a function,
and host your code on Azure Functions. The underlying cloud platform manages the
hosting infrastructure and hosting software. You do not need to worry about the scaling
aspects of your hosted code. The underlying Azure platform manages all the scaling
aspects for your code running on Azure Functions. You get billed when the function is
active and doing its work. You do not get billed whenever Azure Functions is idle.

Azure Functions hosts code that runs for a short time interval. However, you can
increase the execution time by choosing an appropriate hosting plan for the function. A
function gets invoked and starts running using triggers. Azure Functions supports a wide
range of triggers. For example, a timer can trigger a function in predefined time intervals,
a new message in the Queue Storage can trigger it, or a simple HTTP call can trigger a
function. Azure Functions interacts with a wide range of services, such as Blob Storage,
Table Storage, Queue Storage, Event Grid, Cosmos DB, Service Bus Queue, and many
more, using bindings. You can declare both the triggers and the bindings declaratively
without writing any code.

Azure Functions supports three runtime versions and an array of programming
languages based on the runtime you select. 3.x is the newest runtime, and 1.x is the
oldest runtime available. You can build your code using any of the programming
languages in Table 1-1.

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Table 1-1. Azure Functions Runtimes and Supported Programming Languages

Language Runtime 1.x Runtime 2.x Runtime 3.x

C# NET 4.7 NET Core 2.2 NET Core 3.1
JavaScript Node 6 Node 10 and 8 Node 12 and 10

F# NET 4.7 NET Core 2.2 NET Core 3.1

Java Not supported Java 8 Java 11 and 8
PowerShell Not supported PowerShell Core 6 PowerShell 7 and Core 6
Python Not supported Python 3.7 and 3.6 Python 3.8, 3.7, and 3.6
TypeScript Not supported Supported Supported

A function executes whenever it gets invoked by a trigger. The function runs for a
particular time interval and gets into an idle state. It wakes up whenever it gets invoked
again by a trigger. The function takes some time to get warmed up and start executing
whenever it gets triggered.

Introduction to Serverless

You start getting billed for cloud services as soon as you spin them up. You get billed
even if you do not use the services. Also, you need to plan and configure the scaling
strategy for these services. Some services give you the flexibility to set autoscaling, and
for others, you need to set the scaling configuration manually. In either case, you end up
providing the necessary settings so that the services can scale.

In the serverless cloud services case, you get billed when the service is running and
is executing your hosted code, and you do not get billed when the service is idle and
is not executing anything. You pay the cloud vendor on an actual consumption basis,
which saves you money. The underlying platform manages all the scaling aspects of your
application running inside the serverless service. You need not configure any scaling
settings for the serverless service. The serverless services are intelligent enough to add
new instances to handle incoming traffic and remove the additional instances when the

incoming traffic decreases.

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Serverless does not mean that the cloud services are not hosted on any server. You
cannot run any code without a server. In the case of serverless services, you do not have
control over the server hosting your code. You need to bring your code and host it on
the serverless services without worrying about the underlying infrastructure. The cloud
vendor manages the underlying infrastructure.

The following are a few of the popular serverless offerings provided by Microsoft
Azure:

o Azure Functions

e Azure Logic Apps

e Azure Event Grid

e Serverless Azure Kubernetes Service

o Serverless SQL Database

Note In the case of serverless services and platform as a service (PaaS), you
can get your code and host it on the service without managing the underlying
infrastructure. The cloud vendor manages the infrastructure. However, you need to
manage the scaling aspects in the case of PaaS. The cloud vendor manages the
scaling for the serverless service. In the case of PaaS, you get billed as soon as
you spin up the service. However, in a serverless service, you get billed when the
service is active and executes your code.

Azure WebdJobs vs. Azure Functions

You create a WebJobs job in an App Service Plan. A web job works as a background
worker for your applications hosted on Azure App Service. For example, you can host
an application that facilitates users to upload files in Azure Blob Storage. Usually, these
files will be in a user-specific format. Before the application processes the files, the files
should be transformed into a standard format that the application can understand. In
such scenarios, you can create a web job in the same App Service Plan. This web job
will run as a background worker, pick up the user-uploaded file, and transform it into

a format that the application can understand. Web jobs can get triggered using a wide

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

variety of triggers such as Azure Queue Storage, Cosmos DB, Azure Blob Storage, Azure
Service Bus, Azure Event Hub, and many more. Azure WebJobs meets all the necessary
developer needs for background processing. However, it shares the same App Service
Plan as Azure App Service. Sharing the same App Service Plan means sharing the same
underlying computing infrastructure. This sharing of the underlying infrastructure leads
to performance bottlenecks at times.

Functions are not just meant to process background tasks. They can host business
logic for applications as well. However, they are well suited to host code that runs for
a short time interval. The functions are serverless offerings and scale independently.
The underlying infrastructure manages all the scaling aspects for the function. Web
jobs are tied to the Azure App Service instances and scale as and when the Azure App
Service instance scales. You need to set scaling configurations explicitly for each web job.
Functions can run as and when triggered using consumption-based plans, or they can
run continuously using a Dedicated Plan. Web jobs are always tied to the App Service
Plan that is a dedicated hosting plan. However, you are not charged separately for web
jobs. They come with the App Service Plan. The Azure portal provides a browser-based
editor that you can use to build, test, and deploy functions inside the Azure portal. This
feature enhances the productivity of the developer. You can integrate Azure Functions
with Azure Logic Apps with ease and build enterprise-grade solutions on Azure. Azure
Functions supports various triggers such as HTTP WebHooks (GitHub/Slack) and Azure
Event Grid that Azure WebJobs does not support.

Advantages and Disadvantages of Azure Functions

You build your code and host it on Azure Functions without worrying about the
underlying hosting infrastructure. The cloud vendor takes care of all the hosting aspects
such as the hosting server and the hosting software. As a developer, you get more time to
focus on building your application code and working on its functionality. The underlying
infrastructure scales your application without needing you to configure the scale
settings. Also, you get billed when a function gets triggered and the code gets executed.
This feature saves you money. You can use Azure Functions with Logic Apps and build
truly enterprise-grade applications. In fact, you can integrate Azure Functions with a
wide range of Azure services with ease. Azure Functions is well suited to execute code
that runs for a short time interval. You can break down your application functionality
into smaller chunks and host it on Azure Functions. This will help you bring in the

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

single responsibility pattern at a more granular level. The single responsibility pattern
states that a module or a component of a software program should perform a single
functionality of the program. For example, in a calculator application, you should have
a component or a module that performs an add operation, a different component that
performs a subtract operation, and so on. The component of the application should
be designed to perform a single functionality instead of doing everything for the
application.

However, functions execute when they get triggered and move into an idle state
when they do not do any work. Whenever a function is idle, it will take some time for the
function to spring into action whenever triggered. This is because it will take some time
for the underlying infrastructure to get warmed up and start executing the code. This
phenomenon is referred to as a cold-start issue that you must consider while designing
solutions for Azure Functions. At times, Azure Functions can cost more compared to
hosting your code on Azure Web App. The underlying platform spins up new instances
for Azure Functions whenever the load increases, and you do not have any control over
the scaling aspect. Spinning more instances will increase the cost of your solution. You
should predict the user concurrency for your application and have the right cost estimate
for your solution. In addition, you should devise an appropriate strategy to control or
manage the user concurrency using queues or some other techniques and control the
Azure Functions’ degree of scalability in your solution.

Hosting Plans for Azure Functions

The hosting plan helps you choose the underlying infrastructure specification for the
function, define how the function should scale, and set up any other advanced features
such as virtual network support that the function will need. You get billed based on

the hosting plan you choose for Azure Functions. The following are the hosting plans
supported by Azure Functions:

e Consumption Plan
e Premium Plan

¢ Dedicated Plan

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Consumption Plan

In the Consumption Plan case, you do not have control over how the functions scale. The
underlying Azure platform adds or removes instances on the fly based on the incoming
traffic that the functions receive. You do not have any control over the underlying hosting
infrastructure. You get billed when the function runs. This hosting plan is an ideal
serverless plan, but you may encounter a cold-start phenomenon. It takes a while for

the Azure Functions instances to warm up and spring into action whenever triggered.
Your code does not run instantaneously when the function is triggered as it takes some
time to wake up from its idle state. This phenomenon is referred to as the cold-start
phenomenon. In the Consumption Plan case, the function can execute for a maximum
of ten minutes and has a default value of five minutes. The default value of five minutes
refers to the amount of time the function will execute before timing out without explicitly
setting the timeout value for the function.

Premium Plan

In the Premium Plan case, you can have prewarmed Azure Functions instances that
can spring into action and execute the code as soon the function is triggered. The
prewarmed instances help you overcome the cold-start phenomenon. Like with the
Consumption Plan, you do not have any control over how Azure Functions scales or
over the underlying hosting infrastructure in the Premium Plan case. However, you

get options to choose an SKU (EP1, EP2, or EP3) that will meet the memory and CPU
requirements for your application. The underlying Azure platform manages all the
scaling aspects. You get support for a virtual network. In the Premium Plan case, you
can configure a function to run for a longer duration without timing out. By default, the
function execution will time out after 30 minutes. Your functions can run continuously
or nearly continuously.

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Dedicated Plan

The Dedicated Plan in Azure Functions is the same as the App Service Plan in Azure
WebApp. You get to choose from a wide range of SKUs and sizes compared to the
Premium Plan that will meet the application’s memory and CPU requirements. You can
configure manual scaling or automatic scaling for your functions. You also get virtual
network support. This hosting plan is best suited for long-running applications.

Use Cases for Azure Functions

The Azure Functions service can fit into any modern application patterns and use cases.
The following are a few of the best-fit scenarios where you can use Azure Functions:

e You can build an n-tier application using Azure Functions. You can
break the business and data access logic into smaller chunks and
host each of these chunks in a function.

e You can run background processing jobs in Azure Functions.

e You can use Azure Functions and Durable Functions to build
workflow-based applications where you can orchestrate each of the
workflow steps using Azure Durable Functions and Azure Functions.

¢ You can use Azure Functions to build microservices-based
applications. Each function can host a business service.

e You can use Azure Functions to build schedule-based applications
that run on particular time intervals or during a particular time of day
or month or year.

e You can build notification systems to trigger a function to notify an

end user or a system based on conditions and events.

e You can use Azure Functions in Internet of Things (IoT) scenarios
to implement functions to perform a business activity or process
the ingested data and put it in storage or send it to the next set of
processing.

e You can use Azure Functions and Azure Event Grid in event-driven
scenarios where these functions can get triggered and perform a task.

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Summary

In this chapter, you learned the basics of Azure Functions. You explored what Azure

Functions is and discussed the concepts of serverless computing. You then learned

about how Azure WebJobs is different from Azure Functions and then explored the

advantages and disadvantages of using Azure Functions and the scenarios in which to

use the service. You also learned about the different hosting plans available for Azure

Functions.

The following are the key takeaways from this chapter:

Azure Functions is a serverless computing service on the Microsoft

Azure platform and is based on the FaaS computing model.

You need to build your code, spin up a function, and host your code
on Azure Functions. The underlying cloud platform manages the
hosting infrastructure and hosting software.

The underlying platform manages the scaling aspects for Azure
Functions, and you need not do any scaling configurations.

You get billed when a function executes, and you do not incur any
cost when a function is idle.

Azure Functions supports the Consumption, Premium, and
Dedicated Plans.

You can use Azure Functions in current scenarios like the Internet of

Things, microservices, event-driven applications, and many more.

CHAPTER 2

Build Your First Azure

Function

You can create a function for Azure Functions using a wide variety of options. If you
are comfortable with command-line interfaces, then you can use Azure PowerShell
or the Azure command-line interface (CLI). You can use an integrated development

environment (IDE) or a code editor like Visual Studio IDE or Visual Studio Code. You can

also use the Azure portal to create a function.

In the previous chapter, you learned the basics of the Azure Functions service and

explored some of its essential concepts. In this chapter, you will explore various options

available to create a function. You will learn how to set up the development prerequisites

and explore how Azure Functions works under the hood.

Structure of the Chapter

In this chapter, we will explore the following topics:

Creating a function using the Azure portal
Creating a function locally using the command line
Creating a function using Visual Studio Code

Creating a function using Visual Studio

© Ashirwad Satapathi and Abhishek Mishra 2021

A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_2

11

https://doi.org/10.1007/978-1-4842-7122-3_2#DOI

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Objectives

After studying this chapter, you will be able to do the following:
e Understand the core tools of Azure Functions

o Create a function using various tooling options

Create Functions Using the Azure Portal

In this section, you'll create a function in the Azure portal. The Azure portal provides
an in-portal editor to create and customize functions. To create a function in the Azure
portal, you will first have to create a function app. Then you can create multiple functions
inside the function app.

To create a function app, visit https://portal.azure.comand log in to the portal
using your credentials (Figure 2-1).

B® Microsoft

Sign in

to continue to Microsoft Azure

tmail_ phone, or Skype

No account? Create one!
Can't access your account?

Sign in with a security key@

Figure 2-1. Sign in to the Azure portal
Once your login is successful, you will get redirected to the Azure portal dashboard.

Type function app in the search bar and click the Function App option, as shown in
Figure 2-2.

12

https://portal.azure.com

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Microsoft Azure [

X Services
Azure services

> Function App

‘I_ Service catalog managed application
Create a < AppDynamics
resource & ApplianCES

Figure 2-2. Search for function app

Now click the Create button, as shown in Figure 2-3, to create a new function app
resource. If you have already created a function, you can see that listed in the portal.

Home >

Function App ~»

Default Directory

£33 Manage view ~ () Refresh - Exportto

| Filter for any field... | Subscription == all Res|

Showing 1 to 3 of 3 records.

|:| Name T Status T Location Ty
D 4> demofuncbinding Running East US
D %> funcdemo2810 Running East US
D %> funcmulticloud4u Running East US

Figure 2-3. Create a new function app

Now you will get redirected to a new screen, as shown in Figure 2-4, where you need
to fill in the required fields for the Basics section. These details are crucial to create your
function app in your subscription.

Select the subscription in which you want to get billed for this Azure function app.
After you select the subscription, choose or create the resource group where you need to
create the function app. Then provide a unique name for your function app. This name
needs to be globally unique, and no other function app should have the same name
across Azure.

13

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

You can host either the application code or a container in Azure Functions. Select
the option Code. The runtime stack refers to the language in which you need to create
your functions. This book focuses on working with Azure Functions using C#, so for this
example select .NET Core as the runtime stack.

Note You can write your application code and host it directly on function apps.
Alternatively, you can containerize your functions and deploy the container in the
function app.

Next, you need to select the version. We discussed the supported runtime stacks
and supported language versions in Chapter 1; refer to Table 1-1. Finally, select the
region where you need to create this function app. It is recommended that you select the
nearest or same geographic region where the consuming services or applications are
hosted.

Once you have filled in all the fields highlighted in Figure 2-4, click Next: Hosting to
configure your function app’s hosting plan-related configurations. Alternatively, you can
click Review + Create to review your function configuration and then click Create to spin
up the function app.

Note An Azure function app consists of multiple functions. All functions of a
function app share the same resources, configurations, language runtime, and
pricing plan.

14

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Create Function App

Select a subscription to manage deployed resources and costs. Use resource groy

all your resources.
Subscription * @

Resource Group * @

Instance Details
Function App name *
Publish *

Runtime stack *
Version *

Region *

Review + create < Previous

(New) HandsOnAzureFunction

sil'ﬁi ale new

| HandsOnAzureFunction01

(®) Code O Docker Container

| NET Core

3.1

[East US

Next : Hosting >

Figure 2-4. Provide basic configuration details

In the Hosting section, you need to fill in a few more details, as highlighted in
Figure 2-5. You need to select an Azure storage account. You can select an existing
storage account or create a new general-purpose Azure storage account. We need
the storage account for monitoring and logging purposes. All the logs and metrics
data gets stored in the storage account. The storage account also facilitates storing

Consumption Plan or Premium Plan. So, we must have a storage account associated
with a function to facilitate storing the code and the binding configuration files.

the code, as well as the binding configuration files for the functions created using the

If you delete the function app’s storage account, configured while creating
the function app, all the functions that are part of that function app will stop

15

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Create Function App

Basics Hosting Monitoring Tags Review + create

Storage

When creating a function app, you must create or link to a general-purpose Azure Storage accoun
Queue, and Table storage.

Storage account * (New) storageaccounthandsacaf '|
Create new

Operating system

The Operating System has been recommended for you based on your selection of runtime stack.

Operating System * o Linux (‘? Windows

Plan

The plan you choose dictates how your app scales, what features are enabled, and how it is priced.

Plan type * © | Consumption (Serverless)

Review + create < Previous I MNext : Monitoring = I

Figure 2-5. Provide the hosting details

After selecting the storage account, select the operating system for your function.
Let’s choose Windows as the operating system. Azure Functions on Linux does not
support in-portal editing. We will use the in-portal editor to build the function code,
so let’s use Windows as the operating system. Finally, let’s select the hosting plan. We
can use the Consumption Plan, which is a pure serverless plan. To know more about
the available hosting plans, refer to the “Hosting Plans for Azure Functions” section
in Chapter 1. Once you have filled in the necessary details on this tab, click Next:
Monitoring and navigate to the Monitoring tab.

It is highly recommended that you enable Application Insights for your Azure
function app because it will help you to monitor and analyze Azure Functions. Click Yes
to enable Application Insights and create a new insight. If you already have an insight
provisioned, you can use that. Click Next: Tags, as shown in Figure 2-6.

16

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Create Function App

Basics Hosting Monitoring Tags Review + create

Application Insights is a code-less attach to provide detailed observability in to your apg

Application Insights

Enable Application Insights * O No

Application Insights * (New) HandsOnAzureFunction01 (East US
Create new

i) []

Figure 2-6. Provide the monitoring details

Tags help you categorize Azure resources. You can add tags along with tag values
for Azure resources and use the tags to classify a group of resources. For example, you
can create a tag called Production for all Azure resources running in production or a
tag called Stage for all Azure resources running in the staging environment. In this case,
you can consolidate the billing for all the Azure resources in the production or stage
environment. Adding a tag is optional. However, it is a good practice to add a tag for your
Azure resource. Now click Next: Review + create, as shown in Figure 2-7.

17

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Create Function App

Basics Hosting Monitoring Tags Review + create

Tags are name/value pairs that enable you to categorize resources and view consolidated
tag to multiple resources and resource groups.

Mote that if you create tags and then change resource settings on other tabs, your tags wi
Name @ Value © Resource

l l 4 selected

< Previous ‘ I Next : Review + create > ‘I

Figure 2-7. Provide tags if you'd like

On the Review + Create tab, you will see a summary of the configurations you have
selected for the function app, as shown in Figure 2-8. To create the function app, click
Create. Your configuration inputs for the function app get validated. If there are no
validation issues, then the function app creation will start.

18

CHAPTER 2

BUILD YOUR FIRST AZURE FUNCTION

Create Function App

Basics Hosting Monitoring

Summary

+.~, Function App
by Microsoft

Details

Subscription
Resource Group
Name

Runtime stack

Hosting

Storage (New)

Tags Review + create

HandsOnAzureFunction
HandsOnAzureFunctiond
NET Core 3.1

Next > Download a

Figure 2-8. Click Create

While your function app is deploying, you will be redirected to a screen like the

one shown in Figure 2-9. Once the deployment of all your function app resources is

completed, you will see an update. Click “Go to resource” to navigate to the function app.

19

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

[i] Delete (O Cancel [T Redeploy () Refresh

€) we'd love your feedback! —

@ Your deployment is complete

Deployment name: Microsoft. Web-FunctionApp-Pg
Subscription: Visual Studio Enterprise with MSDN
Resource group: HandsOnAzureFunction

v Deployment details (Download)

~ Next steps

| Go to resource |

Figure 2-9. Click “Go to resource”

Figure 2-10 illustrates how the function app will look in the Azure portal. Click
Functions, as highlighted in Figure 2-10, to create your first Azure function.

&> HandsOnAzureFunction01 =

Function App

I,O kearch (Ctrl+/) I « " Browse () Refresh

LAY 1
ST @ Click here to access Ag
B Activity log

 Essentials

%{ Access control (JAM)
Resource group (change)

& Tags HandsOnAzureFunction
. Status
ﬁ Diagnose and solve problems -
Running
Q Security Location
East US

Events (preview)

Subscription (change

Functions
Subscription ID
[Functions] (I

Figure 2-10. Click Functions

20

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

We need to add a function to the function app. Click Add, as shown in Figure 2-11.

(] HandsOnAzureFunction01 | Functions

Function App

|,0 Search (Ctrl+/) « -+ add | Refresh T

@ Overview

£ Filter by name...

E Activity log
Ao Access contral (IAM)
Mame T
¢ Tags
} No results.
&2 Diagnose and solve problems
9 Security

Events (preview)

Figure 2-11. Click Add

Now let’s select an HTTP trigger for the function and click Add, as shown in Figure 2-12.

Add function

Select development environment
Instructions will vary based on your development environment. Learn more

Development environment | & Develop in portal v

Select a template

Use a template to create a function. Triggers describe the type of events that invoke
your functions. Learn more

Y Filter

Template Description

HTTP trigger A function that will be run whenever it receives an HTTP
request, responding based on data in the body or query
string

Timer trigger A function that will be run on a specified schedule

Figure 2-12. Select “Function trigger” and click Add

21

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Note You can use the in-portal editor and build your Azure function code using a
C# script. You can use the editor to access the code files and work with the code.
You can also build Azure function code using C# and compile it as a class library.
Then you can host the C# class library in the Azure function. In this case, you do
not have a way to edit the code files using the in-portal editor in the Azure portal.
For proof of concepts and demonstration purposes, you can use the in-portal editor
to write your function, but for building functions for production scenarios, it is wise
to use an IDE.

Now let’s test the Azure function. Click Get Function Url, as shown in Figure 2-13.

(£} HttpTrigger1 =

unction

2 Search (Ctrl+/) “ f, Disable EI Delete ﬁ Get Function Url

il - ~ .
il Owverview Essentials

Function app

Developer HandsOnAzureFunction01
B Code + Test Status
Enabled
Integration Rescurce group {change)
HandsOnAzureFunctior
B Monitor HandsOnAzureFury i
Subscription (change)
Funcon Keys —

Subscription ID

Figure 2-13. Click Get Function Url

Copy the function URL as in Figure 2-14.

[i] Delete [GetFunctionUd () Refresh

) Disable

Get Function Url

default (functic... https://handsonazurefunction0l.azurewebsites net/api/HttpTrigger1 7code=j

Figure 2-14. Copy the function URL

22

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Open the browser, paste the URL into the address bar, add &name=ashirwad at the
URLSs end, and hit Enter. You should see a response like the one shown in Figure 2-15.

@ httpsy/handsonazurefunction.az X =+
&« - [s.net.-":pl.-"HtLF:Tngge."I?codc—=:1'|JHSJskISI.-'eDquGIDt\’J’OGG?apKS‘ICIFza‘,-NBHr‘1SkXF|n15IECSBQ==&nar‘1e=asi‘u:wac’| Lo i

Hello, ashirwad. This HTTP triggered function executed successfully.

Figure 2-15. Browse the function URL

Create Functions Locally Using the Command Line

In the previous section, you learned how to create a function using the Azure portal.
Now let’s explore more interesting developer-focused ways to build a function using the
command line.

To build functions in your local systems, you will need to install the Azure Functions
core tool in your system and the SDKs or the language’s runtime environment that you
will use to develop your functions. The prerequisites for building a function using the
command-line are listed here:

¢ Azure Function Core Tool
e .NET Core 3.1

You can install .NET Core version 3.1 from the following location:

https://dotnet.microsoft.com/download/dotnet-core/3.1

To install the Azure Functions Core Tools, visit https://github.com/Azure/azure-
Functions-core-tools and refer to the README . md for installation assistance. We are
using the MSI installer from the repository to install it, as highlighted in Figure 2-16.

23

https://dotnet.microsoft.com/download/dotnet-core/3.1
https://github.com/Azure/azure-Functions-core-tools
https://github.com/Azure/azure-Functions-core-tools

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Azure Functions Core Tools

The Azure Functions Core Tools provide a local development experience for creating, developing, testing, running, and
debugging Azure Functions.

Versions

w1 {v1.x branch): Requires .NET 4.7.1 Windows Only
v2 (master branch): Self-contained cross-platform package

v3: (v3.x branch): Self-contained cross-platform package (recommended)
Installing

Windows
To download and install with MSI:

vi

I * Windows 64-bit (VS Code debugging requires 64 bi':}]

* Windows 32-bit

Figure 2-16. Download the Azure Functions Core Tools

Alternatively, you can use Node Package Manager to install the Azure Functions Core
Tools. Open a command prompt and execute the command in Listing 2-1 to install the
Azure Functions Core Tools using Node Package Manager.

Listing 2-1. Install the Azure Functions Core Tools Using Node Package Manager

npm install -g azure-Functions-core-tools

Note The Azure Function Core Tools provide a set of command-line utilities
and the Azure Functions runtime to build, develop, and deploy functions from the
command line or a terminal.

Once you have installed the Azure Functions Core Tools, open a command prompt,
and execute the command in Listing 2-2 to verify whether the Azure Functions Core

Tools were successfully installed.

Listing 2-2. Verify the Azure Function Core Tools installation
func

If the installation is successful, you will see the version for the Azure Functions Core

Tools, as illustrated in Figure 2-17.

24

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Azure Funct

Figure 2-17. Verify the installation for the Azure Functions Core Tools

With the Azure Functions Core Tools installed, you are all set to build your Azure
functions locally. To create a function project, execute the command in Listing 2-3 at the

command prompt.

Listing 2-3. Create an Azure Functions Project
func init --worker-runtime dotnet

You can also execute the command in Listing 2-4 to create an Azure function project.

Listing 2-4. Create an Azure Function Project
func init

You will be prompted to choose the worker runtime for the function project.
The worker runtime is the language you will use in this example to build your Azure
functions. Provide the worker runtime and press Enter. The Azure Function Core Tools
will create all essential function files for you, as illustrated in Figure 2-18. The files host.
jsonand local.setting.json will get created for all the function projects irrespective of

the worker runtime chosen.

25

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

D:\azure-function-demﬁlfunc init --worker-runtime dotnet]

riting D:\azure-function-demo\.vscode\extensions.json
D:\azure-function-demo>dir

Volume in drive D has no label.

Volume Serial Number is BSEA-EAD9

Directory of D:\azure-function-demo

©1/26/2021 ©5:29 PM <DIR>
1/26/2021 @5:29 PM <DIR>

1/26/2021 ©5:29 PM 4,626 .gitignore
©1/26/2021 ©5:29 PM <DIR> .vscode
91/26/2021 ©5:29 PM 692 azure-function-demo.csproj
21/26/2821 ©5:29 PM 231 host.json
01/26/2021 ©5:29 PM 163 local.settings.json
4 File(s) G,71Z bytes

3 Dir(s) 37,952,999,424 bytes free

Figure 2-18. Create an Azure Functions project

Let’s understand the work of the host. json and local.settings.json files, which
were created in the function project.

o Thefile host. json stores the runtime configuration values, which are
later used by functions when running.

o Thefile local.settings.json stores the configuration values used
by function apps when you are running them locally using the Azure
Functions Runtime Tool.

Note You can have functions created with multiple languages with version 1.x
of the Azure Functions runtime. However, with versions 2.x and 3.x, all Azure
functions in a function app should be written in the same language and the worker
runtime selected while creating the function project.

Once you have created a function project, you need to create Azure functions inside
it. To create an Azure function, you need to execute the command in Listing 2-5 in the
command-line interface.

Listing 2-5. Create a Function inside the Azure Functions Project
func Function new --template HttpTrigger --name TestFunction

You provide the type of function trigger in the template parameter of the command
along with the name parameter. This command creates a function named TestFunction

26

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

that can be invoked using an HTTP trigger. After the command executes successfully,

it will create a TestFunction.cs file, as shown in Figure 2-19. TestFunction.cs will
have the same boilerplate code as in the Azure function that we created using the Azure
portal.

D:\azure-function-demo>func function new --template HttpTrigger --name TestFunction
Use the up/down arrow keys to select a template:Function name: TestFunction

The function “"TestFunction" was created successfully from the “HttpTrigger" template.
D:\azure-function-demo>dir
Volume in drive D has no label.

Volume Serial Number is BBEA-EAD9

Directory of D:\azure-function-demo

1/26/2021 ©5:56 PM <DIR>
1/26/2021 ©5:56 PM <DIR>

1/26/2021 ©5:29 PM 4,626 .gitignore

1/26/2021 ©5:29 PM <DIR> .vscode

1/26/2021 ©5:29 PM 692 azure-function-demo.csproj
1/26/2021 ©5:29 PM 231 host.json

1/26/2821 ©5:29 PM 163 lacal.setti ison
1/26/2021 ©5:56 PM I 15399 TestFunction.cs I
S File(s) 5 ytes

3 Dir(s) 37,952,978,944 bytes free

Figure 2-19. Create a function inside an Azure Functions project

Now let’s run the Azure function using the Azure Functions Core Tools. To do so,
execute the command in Listing 2-6.

Listing 2-6. Execute the Azure Function
func host start

This command restores all the NuGet packages and then builds the function
project. Once the build finishes successfully, the Azure Functions runtime gets started
and hosts all the functions in the Azure function app. It displays endpoints for all the
hosted functions endpoint, as shown in Figure 2-20. If there is any build error, it will get
displayed in the console.

27

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

D:\azure-function-demo>func host start
Microsoft (R) Build Engine version 16.8.3+439993bd9d for .NET
ICopyright (C) Microsoft Corporation. All rights reserved.

Determining projects to restore...
Restored D:\azure-function-demo\azure-function-demo.csproj (in 31.22 sec).
azure-function-demo -» D:\azure-function-demo\bin\outputiazure-function-demo.dll

Build succeeded.
@ Warning(s)
@ Error(s)

Time Elapsed 80:81:89.86

lAzure Functions Core Tools
Core Tools Version: 3.0.32
3.8.1

33 Commit hash: d1772f733802122a326F2696dd4ce86292ece171
Function Runtime Version: 9

5193.8
[2021-81-26T12:29:59.8727]

Functions:

TestFunction: » I

Figure 2-20. Execute an Azure function

Let’s copy the endpoint/URL for the TestFunction, append the query string
?name=ashirwad to the URL, and then send a GET request to the function using the
command in Listing 2-7.

Listing 2-7. Send a GET Request to the Azure Function
curl -get http://localhost:7071/api/TestFunction?name=ashirwad

Figure 2-21 shows the response, and you can see that it is the same as what we got for
the function that we created earlier using the Azure portal.

D:\test>curl --get http://localhost:7071/api/TestFunction?name=ashirwad
Hello, ashirwad. This HTTP triggered function executed successfully.

Figure 2-21. Response to CURL request

Create Functions Using Visual Studio Code

In the previous sections, we discussed ways to develop Azure functions locally using a
command line with the Azure Function Core Tools.

28

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

In this section, we will look at ways to leverage the power of Visual Studio Code
to build Azure functions and run them. To follow along with this section, here are the
prerequisites:

e .NET Core 3.0 SDK
. VS Code
e Azure Functions Core Tools

Go to https://code.visualstudio.com/download to download the latest version of
VS Code. You can visit https://dotnet.microsoft.com/download/dotnet-core/3.1to
install .NET core version 3.1.

If you have not installed the Azure Functions Core Tools yet, you can refer to the
section “Create Functions Locally Using the Command Line.” After installing all the
prerequisites mentioned, open Visual Studio Code and click Extensions to go to the
extension marketplace and search for the C# extension for IntelliSense and debugging
support. Type C# in the search bar and install Microsoft’s extension, as shown in
Figure 2-22. You are free to select any other extension for C# based on your preference.

@ EXTENSIONS: MARKETPLACE = Extension: C%
CR 1222
H— £ ™ 1 307 {r r- Ty
C# for Visual Studio Code (powered by Omi.. Microsoft | < 10,043.070 * % K % Repository License
Microsoft Install | C# for Visual Studio Code (powered by OmniSharp).
Kite AutoComplete Al Code: Pytho... o130 -
Al code completions for all languages, intellis...
Kite

C# XML Documentation Comments 0,120
B:!G Generate C# XML documentation comments f...

Keisuke Kato [Install |

Details Contributions Changelog

Figure 2-22. Install the C# extension

After this, you need to install the Azure Functions extension from the extension
marketplace to create a function project and deploy it to the Azure infrastructure. To
install it, search for azure function in the search bar, select Azure Functions, and install it,
as shown in Figure 2-23.

29

https://code.visualstudio.com/download
https://dotnet.microsoft.com/download/dotnet-core/3.1

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

EXTENSIONS: MARKETPLACE

Extension: Azure Functions *

azure function

Azure Functions ms-szuretcols

Azure Functions 120 . N I)
An Azure Functions extension for Visual Studi... / Microsoft | @ 718535 | % % % % Repository | License
Microsoft [Install | An Azure Functions extension for Visual Studio Code.
Azure Account 095 m
A common Sign-In and Subscription manage... /
Microsoft
Azure Databases 0151 o c a P L
o) Details ontributions Changelog Dependencies

H:' Create, browse, and update globally distribut...

Microsoft

Figure 2-23. Install the Azure Functions extension

Now that you have installed the required dependencies, you are all set to build a
function using Visual Studio Code. Click the Azure extension icon or press Ctrl+Alt+A
to go to the Azure Functions extension to create your function project. Now click Create
New Project or click the icon, as shown in Figure 2-24. You will be prompted to select the
location. Then you will be required to select the language in which you will create all the
functions of this function app. Since the objective of the book is to create functions using
C#, let’s select C# as the worker runtime of your function app.

AZURE: FUNCTIONS m ¥ F D8 - Create new project
% Create New Project... kelect a language
4] Sign in to Azure... ICt recantivised) I
=+ Create a Free Azure Account... JavaScript "
TypeScript
Python
Java
PowerShell (Preview)

[2 View sample projects

Figure 2-24. Create a new function app project

Then you will get prompted to select the template for the function. For this section’s
purpose, let’s select the HttpTrigger template, as shown in Figure 2-25.

30

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

* Create new project
kelect a template for your project's first function

V) Skip for now
HttpTrigger

BlobTrigger

CosmosDBTrigger
DurableFunctionsOrchestration
EventHubTrigger
lotHubTrigger

QueueTrigger
ServiceBusQueueTrigger
ServiceBusTopicTrigger
TimerTrigger

{23 Change template filter Current: Verified

Figure 2-25. Select HttpTrigger

Next, you will be prompted to give your Azure function a name. Let’s name it
TestHttpFunction, as shown in Figure 2-26.

+* Create new HttpTrigger (4/7)

I TestHttpFunction

Provide a function name (Press ‘Enter’ to confirm or 'Escape’ to cancel)

Figure 2-26. Provide a name for the function

Then you will be prompted to provide a namespace. Name the namespace of the
function HandsOnAzureFunction.FunctionDemo, as shown in Figure 2-27.

* Create new HttpTrigger (5/7)

HandsOnAzureFunction.FunctionDemo

—_—l = X
Provide a namespace (Press "Enter to confirm or ‘Escape’ to cancel)

Figure 2-27. Provide a namespace

31

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Now, you will be prompted to select the authorization level for this function. As
shown in Figure 2-28, you have three authorization levels: Anonymous, Function, and
Admin.

+ Create new project (7/7)

kelect how you would like to open your project

I Open in current window I

Open in new window
Add to workspace

Figure 2-28. Select the authorization level

These authorization levels help you restrict the access to your functions from
unwanted users.

Now Visual Studio Code has generated some boilerplate code for the HttpTriggered
Azure function TestHttpFunction to display the value passed to it as a query string, as
shown in Figure 2-29.

EXPLORER
4 OPEN EDITORS on.Fur mo.T ion > @ Run
X C TestHtipFunction.cs u
“ TESTFUNCTION
? wscode
> bin
3 ob 17 [HttpTrigger(AuthorizationLevel. Anonymous, “get”, “post™, Route = null)] HttpRequest red
_ 18 J ILogger log)
.¢ .gitignore u 19 {
hostjson L 20 log.LogInformation{"C# HTTP trigger function processed a request.”);
ocals json 21
22 string name = req.Query["name”];
€ TestHittpFunction.cs u 23
24 string requestBody = await new Streasfeader(req.Body).ReadToEndAsync();
25 dynamic data = JsonConvert.Deserialize0bject(requestBody);
26 name = name 7 datal.name;
27
28 string responseMessage = string.IsNullOrEmpty(name)
20 ? "This HTTP triggered function executed successfully. Pass a name in the query stri
EL] : $"Hello, {name}. This HTTP triggered function executed successfully.”;
31
32 return new OkCbjectResult(responseMassage);
33 }
34 1
35}

Figure 2-29. Default generated code for the function

As you have created a function, let’s run it and see what response you get. To run
the function, press F5. This action will start the function runtime, host the function, and
list all the functions present in the function project. This action internally runs the func
host start command.

32

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Once the function app is running, you will be able to see the URL to access the
HttpTriggered function along with a few buttons to restart, disconnect, and other
debugging options at the top, as shown in Figure 2-30.

DESUG AMD RUN | b Attachto b~ | &] € TestHttpFunclioncs

o VARIABLES

» log)

] log.LogInformation{"C® HTTP trigger function processed a request.”);

= - Strean HttpRequest.Body

22 ! string namse = reg.Query[“name”];

23 Gats or sets the RegquestBody Stream.

.24 string requestBody = await new 5
25 dynamic data = Jsonfonvert.Deser ject{requestBody); =
26 name = name ¥ data?.name;
7
28 string responseMessage = string. [sHullOrEmpty(name)
) ? "This HITP triggered function executed successfully. Pass a name in the query stri
E2 : §7Hello, {name}. This HTTP tripgered function executed successfully.”;
31
32 return new OkObjectResult{responseMessage);
33 }
34 }
5}
6

-297e3:12:e8.

Figure 2-30. Run the function app

Copy the URL and append it with the query string ?name=ashirwad. Then send a
request to the function by pasting the URL and the query string in the browser’s address
bar and press Enter. As shown in Figure 2-31, we get a similar response from our function
previously obtained from the other sections.

@ @ localhost:7

Hello, ashirwad. This HTTP triggered function executed successfully.

Figure 2-31. Function output in the browser

33

CHAPTER 2

Create Functions Using Visual Studio

BUILD YOUR FIRST AZURE FUNCTION

In the previous section, we discussed ways to create an Azure function using VS code

and build it using the Azure function runtime. The focus of this section is to create

an Azure function using the Visual Studio 2019 Community edition. You can use any

editions of Visual Studio.

To follow along with this section, here are the prerequisites:

e .NET Core SDK

e Visual Studio 2019 Community edition

e Azure development workload

Goto https://visualstudio.microsoft.com/vs/community/ to download the

latest version of Visual Studio 2019 Community edition. You can visit https://dotnet.
microsoft.com/download/dotnet-core/3.1 to install .NET Core version 3.1.

Before you start building an Azure function using Visual Studio, you need to install

the Azure development workload. To install this workload, open the Visual Studio

installer, click Modify, select the check box for the Azure development workload, and

click Modify to install it, as shown in Figure 2-32.

Modilying — Visual Studio Community 2015 — 16.8.4

locations

Waorkloads
Web & Cloud (4)
ASPNET and web development

Build web applicatiors using ASPNET Core, ASPNET,
HTMLavaSeript, and Containers intuding Dacker suppart

P Pythan development
» Editing, debugging, interactive development and source
contral f2¢ Python,

Desktop & Mobile (5)

ﬂ] JNET desktop development
Build WPF, Windows Forms, and console applications using
€= Vigual Basi, and = with NET Core and INET

Wl Universal Windows Platferm developrnent
MM Creste apphcations for the Unaverssl Windaws Platform
with C=, VB, or eptionally C++

Location
CProgram Files (x867\Microsoft Visual Studieh\201 M\ Community

Azure development
Azure SDKs, tocls, and projects far developing doud appt
and creating resources uting NET Core and NET

Us

e

Made js development
Suild scalable network applications using Nodejs, an
asynchranaut ecent-driven JavaSeript runtime.

Deskrop development with €= +
Suld madern C- + azps for Windows using tools of your
chelce, induding MSVC, Clang, CMake. or M3Build.

Mobie development with NET
Budd eross-platfarm appleations for 105, Android e
Winders using Xamarin.

By continuing. you agree to the [xerse for the Visual Studia edition you selected. We also offer the ability to download other software with Visual Studio, Thas software
is Fcensed separately, a5 set out in the 3rd Pacty Notices o in its accompanying licerse, By contiuing, you alio agree 1o thote licenses.

Figure 2-32. Install the Azure development workload

34

Installation details
7 wa swsays g ey
» JNET Core cross-platform development
w Individual components
NET 5.0 Runtime
B MET Core 3.1 Runtime (LTS)
2 NETSOK
Bl NuGet package manager
B <= and Visual Basic Roslyn compilers
B C# and Visual Basic
Container development tock
4.8 50K

JavaScript and TypeSaipt language support
Javascript dizgnostics

B mssuild

M Text Template

P Razor Language Senvic

B 115 Express

SQL ADAL runtime

SQL Server Express 2016 LocalDd

Total space reguired oKE

Install while dewnloading =

https://visualstudio.microsoft.com/vs/community/
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://dotnet.microsoft.com/download/dotnet-core/3.1

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Once the installation of the workload is completed, open the Visual Studio 2019
Community edition and click “Create a new project,” as shown in Figure 2-33.

Visual Studio 2019

Open recent Get started

| #_ Clone a repo!

4 This week

=] BlazorApp.sin

4 This month

=] HandsOnAzureFunction.sin

Open a local folder

Navigate and edit code within any folder

Create a new project

4 Older

'Ei‘ WebaA,|

https

Figure 2-33. Create a new project

Now you can see all the available project templates in the window. Select the Azure
Functions project template as shown in Figure 2-34 and click Next.

35

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Create a new project

Recent project templates c - Allplatforms

Yor A
lazor App
¥ Azure Functions

@ ASP.NET Core Web Application

Meobile App (Xamarin.Forms)
Linux macO5s Windows

BB Class Library (NET Standard)

eate an Azure Function project.
B Windows Forms App [NET Framework) e En
Bl ASP.NET Web Application (.MET Framework) C

B3 Console App (\NET Framew

Linuoe Window

Figure 2-34. Select the Azure Functions template

You need to fill in the project details such as the project name, solution name, and
source location. All of these are required fields. Once you fill in all of those fields, click
Create, as shown in Figure 2-35.

36

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Configure your new project

Azure Functions © Awre Cloud
Project name

TestFunction
Location

C:\Users\Ashirwad Satapathi\source\repos
Solution name ®

TestFunction

| Place solution and project in the same directory

Create

Figure 2-35. Click Create

Now select the runtime version, trigger type, storage account, and authorization level
for your Azure function, as shown in Figure 2-36. You need to set the runtime version to
Azure Function v3, the trigger type of the function to “Http trigger,” the storage account
to “Storage emulator,” and the authentication level as Anonymous; then click Create.

Note You can connect to your existing storage account in your Azure subscription
instead of the storage emulator.

37

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Create a new Azure Functions application

Azure Functi

o Blob trigger

A C# function t ill be run whenever a blob is added to a specified container.

Storage account (AzureWeblobsStorage)
Storage emulator

4 Some capabilities may require an Azure storage account.

+ < i
g Cosmos DB Trigger Authorization level

A C# function that will be run whene ments change in a document coll
Ancrymous

Durable Functions Orchestration

A stration function that invokes activity functions in a sequence.

Event Grid trigger

C# function ti ill be run whenever an event grid r

Event Hub trigger

AcC# ill be run

Create

Figure 2-36. Provide the template details

Now Visual Studio will generate a function named Functionl with some boilerplate
code as in the case with functions created in other sections. To start the function app,
click TestFunction, as highlighted in Figure 2-37.

- 3 TestFunction.Functicn

lass Punctionl
["Function1®)]
gt Task<IActionAesult> Run(
(Suthorizationlevel.Ancnymous, "get™, “post”, Route = null)] HitpRequest req,
log.LogInformation("Cr HTTP trigger function processed a request.”);
ring nase = req.Query[“nase"];
requestiody it new Streank (req.Body) .Head

data = Jsc Deserializedhject (requestBody);
name 7 cata?.name;

string responsetessage - string.IshullOrEspty(nase)
“Thiz HTTP triggered function executed successfully. Pass a name in the query string or in the request body for a pd
: 37Hello, {name}. T HTTP triggered function executed successfully.™;

return new OkObjectiesult(responseMessage);

Figure 2-37. Execute the function
38

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Note By default, the first function in the function project gets named as
Function1 in Visual Studio. But after the project gets created, you can change the
function name by changing the FunctionName attribute’s value.

Once you click TestFunction, it starts the storage emulator, starts the function
runtime, and hosts all the functions present inside the function app.

This activity is similar to using the func host start utility of the Azure Functions
Core Tools. Now you should be able to see the Azure Functions Runtime Tool.

Copy the URL route of the Azure function to send it a request. Paste the URL in the
browser’s address bar, append the query string ?name=ashirwad, and then press Enter to
send a request to the Azure function (Figure 2-38).

Rzure Functions Core Tools
Lore Tools Version: 3.8.3233 Commit hash: d1772f733802122a326Ta696dd4c86292ec0l7l
Function Runtime Version: 3.8.15193.@

[2021-981-3@T@7:17:14.6052]

Functions:
Functioni: I : : I

{2021-91-30T@7:17:39.268Z] Host lock lease acquired by instance ID 'BE0000200000002C0000000879

Figure 2-38. Copy the function endpoint

Figure 2-39 shows the response from the Azure function. If you notice, the response
will be the same as the functions we have created in other sections of this chapter.

- C 0 @ localhost:7071/api/Function1?name=ashirwad

Hello, ashirwad. This HTTP triggered function executed successfully.

Figure 2-39. Function execution output

39

CHAPTER 2 BUILD YOUR FIRST AZURE FUNCTION

Summary

In this chapter, you explored different ways to create Azure functions. We learned how to
create Azure functions using the Azure portal. Then you learned how to create a function
using a command-line tool like the Azure Functions Core Tools and code editors and
integrated development environments like Visual Studio Code and Visual Studio.

The following are the key takeaways from this chapter:

» You can create a function using the Azure portal. You get an in-portal
editor to write and work on the function code with ease.

¢ You can install the Azure Functions Core Tools and create Azure
functions using a command-line interface. This option helps you
automate the creation of Azure functions.

¢ You can install C# and the Azure Functions extension in Visual Studio
Code and create functions using Visual Studio Code.

¢ You can install an Azure functions workload in Visual Studio and
build Azure functions.

40

CHAPTER 3

What Are Triggers
and Bindings?

Azure functions are serverless components. They remain in an idle state whenever they
are not doing any work. You need to invoke Azure functions so that they can wake up
and execute the hosted code. Triggers define how the functions run. You can invoke
Azure functions using triggers, and they provide all the necessary input data or the
input payload for the function. Your Azure functions need to send or receive data from
other resources, such as the Queue Storage, Blob Storage, RabbitM(Q, and many more, to
Azure Functions. Bindings enable functions to interact with other services declaratively
without needing to write any code.

In the previous chapter, you explored how to create functions using the various
options available. In this chapter, you will explore what triggers and bindings are and
how to configure them for functions.

Structure of the Chapter

In this chapter, you will explore the following aspects of triggers and bindings:

e Introduction to triggers and bindings

Supported triggers and bindings

Triggers and bindings use cases

o Implementing triggers and bindings for functions

41
© Ashirwad Satapathi and Abhishek Mishra 2021

A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_3

https://doi.org/10.1007/978-1-4842-7122-3_3#DOI

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Objectives

After studying this chapter, you will be able to do the following:
o Understand what triggers and bindings are and where to use them

¢ Create and use them with functions

Introduction to Triggers and Bindings

Triggers define how the functions execute. They wake up functions from their idle state
and make them execute. Functions can be invoked from a wide range of services. These
services invoke functions using triggers and pass on the input data as a payload to the
functions. You can configure a single trigger for an Azure function.

Azure functions need to interact with other services such as Blob Storage, Cosmos
DB, Kafka, and more to achieve business functionality. You can use bindings to facilitate
data exchange between these services and Azure Functions. Functions can send data to
these services or get data from these services as needed.

You do not need to write any code to implement triggers and bindings. You need to
build declarative configurations to enable triggers and bindings and facilitate interaction
with Azure Functions and other services. This functionality saves much programming
effort for you. Otherwise, you would have to write a lot of code and handle complexities
to facilitate these interactions. If you are creating a C# class library for an Azure function
using the Visual Studio IDE or Visual Studio Code, you can decorate your function
method with attributes to enable triggers and bindings. If you are using the Azure portal
to create functions, you can modify the function. json file and add all the necessary
configurations to enable triggers and bindings.

The following is an example of function. json that adds a Blob trigger to the Azure
function created using the Azure portal. This configuration enables a Blob trigger for the
function. The Azure function can accept binary data as input from the Azure Blob.

{
"dataType": "binary",
"type": "blobTrigger",
"name": "blob",

"direction": "in

42

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Triggers are unidirectional. Azure functions can receive data from triggers but
cannot send back any data to the triggering service. Bindings are bidirectional. Functions
can send data to a configured service or receive data from a configured service. The
following are the available directions that you define for the bindings:

(] in
e out
e inout

Figure 3-1 illustrates triggers and bindings with an Azure function. The function gets
triggered whenever a message gets added in the Azure Service Bus Queue. Alternatively,
you can use a Storage Account Queue instead of the Service Bus Queue. The message in
the Service Bus Queue is passed to the Azure function as a trigger payload. Azure Queue
Storage and Azure Cosmos DB are configured as bindings. Azure Cosmos DB supports
bindings in both directions. Functions can send and receive data from Azure Cosmos
DB. The Azure Service Bus Queue supports output binding. Azure Functions can send
data to functions. Azure Functions processes the payload message and passes on the
processed output to Azure Queue Storage and Azure Cosmos DB. It can also get data
from Azure Cosmos DB if needed.

. Input/Output
T
¥ 1 rieger Binding
Y) >
Bl +
Service Bus Queue Azure Function Azure Cosmos DB

l Input Binding

Storage Queue

Figure 3-1. Triggers and bindings with Azure Functions

43

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Note You can have a single trigger configured for an Azure function. Triggers
support the input direction. You can have multiple bindings for an Azure function.
In the case of bindings, you can have either input, output, or both directions.

Supported Triggers and Bindings

Triggers and bindings are crucial for Azure Functions. Actual business scenarios will

need an Azure function to exchange data with other services. Azure Functions supports

a wide range of triggers and bindings. The supported triggers and bindings depend on

the runtime version of Azure Functions. If none of the supported bindings matches your

requirements, you can create your custom binding using .NET and use it anywhere per

your needs.

The following are triggers supported for Azure Functions runtime 1.x:

Blob Storage

Azure Cosmos DB
Event Grid

Event Hubs

HTTP and WebHooks
IoT Hub

Queue Storage
Service Bus

Timer

The following are triggers supported for Azure Functions runtime 2.x and newer:

44

Blob Storage
Azure Cosmos DB
Dapr

Event Grid

CHAPTER 3

Event Hubs

HTTP and WebHooks
IoT Hub

Kafka

Queue Storage
RabbitMQ

Service Bus

Timer

WHAT ARE TRIGGERS AND BINDINGS?

The following are the bindings supported along with the input and output directions

supported for Azure Functions runtime 1.x:

Blob Storage (input, output)
Azure Cosmos DB (input, output)
Event Grid (output)

Event Hubs (output)

HTTP and WebHooks (output)
IoT Hub (output)

Mobile Apps (input, output)
Notification Hubs (output)
Queue Storage (output)
SendGrid (output)

Service Bus (output)

Table Storage (input, output)

Twilio (output)

45

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

The following are the bindings supported along with the input and output directions
supported for Azure Functions runtime 2.x and newer:

e Blob Storage (input, output)

e Azure Cosmos DB (input, output)
o Event Grid (output)

o Event Hubs (output)

e HTTP and WebHooks (output)
e IoT Hub (output)

e Queue Storage (output)

e SendGrid (output)

e Service Bus (output)

o Table Storage (input, output)

e Twilio (output)

e Dapr (input, output)

o Kafka (output)

e RabbitMQ (output)

o SignalR (input, output)

Note You cannot create Kafka and RabbitMQ triggers using the Consumption
Plan. Dapper triggers are applicable for the Azure Kubernetes Service.

Trigger and Binding Use Cases

Let’s discuss some of the use cases for triggers and bindings. These use cases will give
you a further understanding of how to use triggers and bindings in real-time production
scenarios. The following are a few of the use cases:

46

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

e AnAzure function gets triggered when a message arrives in a queue,
and the processed message is put into another queue.

e A scheduled job picks up images for Blob Storage.

e An HTTP call invokes an Azure function to execute some business
logic.

e Anevent grid can invoke an Azure function to send an email with
event data.

» RabbitMQ triggers an Azure function that processes the message sent
by RabbitMQ and puts the processed message in Azure Cosmos DB.

Use Case: An Azure function gets triggered when a
message arrives in a queue, and the processed message
is put into another queue

You can configure a Queue Storage trigger for an Azure function. Whenever a message
arrives in the queue, it invokes the Azure function. Azure Functions starts executing the
hosted code as soon as it gets invoked. The message in the queue is passed on to the
Azure function as the input payload. The Azure function code processes the message
and passes on the processed message to another Queue Storage. Figure 3-2 illustrates
the use case.

Trigger Output Binding

Storage Queue Storage Queue
Azure Function

Figure 3-2. Azure function triggered by a Queue Storage

This use case will best fit in an e-commerce application scenario. Whenever a
customer places an order, the order gets added to the Queue Storage as a message. As
soon as an order message gets added in the Queue Storage, the function gets invoked.
Azure Functions processes the order message and sends the processed message to another
Queue Storage. Some other service can pick up this message for further processing.

47

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Use Case: A scheduled job picks up images for Blob
Storage at a particular time interval and then processes
and stores them back in the Blob Storage

You can configure a timer-based trigger for your Azure function. You can set up
particular time intervals when the timer should invoke the Azure function. Once the
Azure function gets triggered by the timer, it can pick up a Blob from the Blob Storage,
process the Blob, and put the processed Blob back in Azure Blob Storage. Figure 3-3
illustrates the use case.

_ Input/Output
GQ‘ - < > Blndlng

Timer Azure Function Storage Blob

Figure 3-3. Azure function triggered by a timer

This use case is best when you need to perform a couple of background activities. For
example, you can use this strategy for image processing systems where a user will upload
an image to process in Blob Storage using a user interface. At particular time intervals in
the day, the Azure function will run. It will pick up the image from Blob Storage, process
it, and put the processed image back in Azure Blob Storage.

Use Case: An HTTP call invokes an Azure function to
execute some business logic

You can configure an HTTP trigger for an Azure function. Whenever an HTTP request
such as GET, PUT, POST, or DELETE invokes an Azure function, the Azure function
executes the hosted code. The input payload for the HTTP trigger will consist of the data
to process. Azure Functions processes the data and inserts the data into Azure Cosmos
DB. Figure 3-4 illustrates the use case.

48

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Trigger Output Binding
Web Hook < >

Azure Function Azure Cosmos DB

Figure 3-4. Azure function triggered by an HTTP trigger

This scenario best fits where you need to build a data access layer on top of the
database. This data access layer will expose the data from the underlying database using
REST APIs.

Use Case: An event grid can invoke an Azure function to
send an email with event data

You can configure an event grid that can trigger an Azure function. An event subscriber
such as Azure Service Bus Queue can subscribe to the event grid. Whenever a message
arrives in the Azure Service Bus Queue, it will raise an event and send the message as
event data to an Azure event grid topic. The event grid will invoke the function and send
the message data as input payload. Azure Functions processes the message data and
sends the message data to the concerned back-end team for further processing using an
email sent by Send Grid. Figure 3-5 illustrates the use case.

[— Tflgger > Output Binding
Event Grid Azure Function Send Grid

Figure 3-5. Azure function triggered by event grid

49

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Use Case: RabbitMQ triggers an Azure function that
processes the message sent by RabbitMQ and puts the
processed message in Azure Cosmos DB

You can configure a RabbitMQ trigger for an Azure function. Whenever a message gets
added to the RabbitMQ queue, it will trigger the Azure function and pass on the message
as input payload to the Azure function. Azure Functions processes the message and puts
the processed message in Azure Cosmos DB. Figure 3-6 illustrates the use case. You can
build microservices-based applications using Azure Functions and RabbitMQ with ease.

+

Trigger Output Binding
GV — < > >

Azure Function Azure Cosmos DB

Figure 3-6. Azure function triggered by RabbitMQ

Implement Triggers and Bindings for Azure
Functions

Let’s create an Azure function that is invoked whenever a message is inserted into

the Queue Storage. The function will process the queue message and then insert the
processed message to Blob Storage. Here, in this case, you need to create a Queue
Storage trigger that will invoke the Azure function and a Blob Storage output binding that
the Azure function will use to put the processed queue message in the Blob Storage.

As a prerequisite, you should create an Azure storage account. The storage account
should have Blob Storage with the container name processeddata. Azure Functions
processes the queue message and puts it as a Blob in the processeddata container. The
storage account should have a queue named rawdata. Whenever you put a message in
the rawdata queue, it will invoke the Azure function.

Figure 3-7 illustrates the Blob Storage container created as a prerequisite.

50

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

— storagedemofunc | Containers

Storage account

|/o Search (Ctrl+/) l « -+ Container () !
= Overview l Search containers by p
=] Activity log

Name
¢ Tags

D processeddata

22 Diagnose and solve problems

Figure 3-7. Blob Storage Container for function output binding

Figure 3-8 illustrates the Queue Storage that we should create as a prerequisite.

rm storagedemofunc | Queues #

Storage account

‘.,0 Search (Ctrl+/) l « + Queue O Refres

= Overview Authentication method:

B Activity lo
- yied ‘/O Search queues by prdg

¢ Tags Queue

ﬁ Diagnose and solve problems D rawdata

fa Access Control (IAM)

Figure 3-8. Queue Storage for function trigger

Now let’s create an Azure function. Go to the Azure portal in your browser. Click
“Create a resource,” as shown in Figure 3-9.

51

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Azure services

+ ®) 2

Create a Resource Azure Active
resource groups Directory

Figure 3-9. Click “Create a resource”

You will find Function App on the Compute tab. Click Compute and then click
Function App, as in Figure 3-10.

Azure Marketplace Seeall Featured Seeall

Get started Virtual machine

2arn more
Recently created

Al + Machine Learning Virtual machine scalg

a Learn more

Analytics
Blockchain Kubernetes Service
I Compute Quickstarts + tutorials
Containers
i Function App
Databases Quickstarts + tutorial]

Figure 3-10. Click Function App

Provide the subscription, resource group, function app name, runtime stack, version,
and region. Click “Review + create,” as shown in Figure 3-11.

52

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Create Function App

Subscription * @

Resource Group * (O

Instance Details
Function App name ¥
Publish *

Runtime stack *
Version *

Region *

< Previous

Review + create

l rg-funcdemo

Create new

| demofuncbinding

@ Code

O Docker Container

| .NET Core

Mext : Hosting >

Figure 3-11. Click “Review + create”

Click Create (see Figure 3-12). This action will spin up the Azure function.

Summary

.~ Function App
by Microsoft

Details

Subscription
Resource Group
Name

Runtime stack

Hosting

Storage (New)

< Previous

rg-funcdemo
demofuncbinding
.NET Core 3.1

Next > Download a

Figure 3-12. Click Create

53

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Once the function gets created, go to the function app and click the Functions tab, as

shown in Figure 3-13.

<4~ demofuncbinding

Function App

|,f3 Search (Ctrl+/) | &«

> Overview .
Activity log

Access control (IAM)
Tags

Diagnose and solve problems

e S & Y m

Security

Events (preview)

Functions

A} Functions

b

" Browse () Refresh

0 Click here to access Apq

- Essentials

Resource group (change)
rg-funcdemo

Status

Running

Location
East US

Subscription (change)

Subscription ID

Figure 3-13. Click Functions

Now let’s add a function. Click Add, as in Figure 3-14.

Function App

() demofuncbinding | Functions

‘ R Search (Ctrl+/)

+ add | O

‘<<

> Overview

B Activity log

Ra. Access control (IAM)
¢ Tags

&2 Diagnose and solve problems

@ Security

-

|,0 Eilter by nan

Name T

No results.

Figure 3-14. Click Add

54

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Select “Azure Queue Storage trigger,” as shown in Figure 3-15. You need to invoke the

function whenever a message gets added to the queue.

Add function

Select a template

Use a template to create a function. Triggers describe the type of events that invoke
your functions. Learn more

Y Filter

Azure Queue Storage trigger A function that will be run whenever a message is added
to a specified Azure Storage queue

Azure Service Bus Queue A function that will be run whenever a message is added

trigger to a specified Service Bus queue

Figure 3-15. Select “Azure Queue Storage trigger”

Scroll down and provide a name for the trigger and the storage account queue name
where you will add the messages to trigger the function, as in Figure 3-16. Click New and
provide the storage account where you have created the queue.

55

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Add function

Azure Service Bus Topic A function that will be
trigger to the specified Servicq
Azure Blob Storage trigger A function that will be

snecified container

Template details

We need more information to create the Azure Quel
Learn more

New Function*

[queuedatatrigger |

Queue name*@

‘ rawdata |

Storage account connection * ®

| storagedemofunc_STORAGE (new) s |

New

T [o

Figure 3-16. Click Add

Once the function gets created, click Integration, as shown in Figure 3-17. Here we
can add the output binding for the Blob Storage.

56

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

[fy) queuedatatrigger

Function

I,O Search (Ctrl+/) | «

A} Overview

Developer

Code + Test

Integration

Figure 3-17. Click Integration

Click “Add output,” as in Figure 3-18. Here you will add the output binding.

Code + Test

Integration + Add input

Monitor

Function Keys
f Function

-:mr-zuedatat|'igge|-

= Outputs

+ Add output

Figure 3-18. Click “Add output”

Provide a name for the output parameter used in the function code to access the
Blob Storage. The parameter name specified here should match exactly with the out
parameter in the Run method in the run.csx file. Provide a path for the Blob container.
Here name the Blob file as a randomly generated GUID. The {rand-guid} expression
helps you generate a random GUID for the Blob filename. Provide a storage account
connection name. Click OK as in Figure 3-19.

57

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Create Output X

Start by selecting the type of output binding
you want to add.

Binding Type

Azure Blob Storage v

Azure Blob Storage details

Blob parameter name*©

outputBlob ‘

Path*®

processeddata/{rand-guid}.txt |

Storage account connection*©

storagedemofunc_STORAGE ~ |

New

Figure 3-19. Create an output binding

Click Code + Test as in Figure 3-20. Here you can add the function logic in the run. csx file.

[#y) Queuedatatrigger

Function

I/O Kearch (Ctrl+/) | «

il Overview

Developer

Code + Test

Integration

B Monitor

Function Keys

Figure 3-20. Click Code + Test
58

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Add the logic shown in Listing 3-1 to the run.csx file. You can see that the out

parameter named outputBlob matches precisely the name of the output Blob parameter

name specified while creating the output binding, as shown earlier in Figure 3-19.

Listing 3-1. Function Code

using System;

public static void Run(string myQueueItem, out string outputBlob, ILogger log)

{
log.LogInformation($"C# Queue trigger function processed:
{myQueueItem}");
//Process Message. We are just adding a "Processed Text" to the message
myQueueItem = myQueueItem + "-Processed !!!!1";
//Storing Queue Message to Blob Storage
outputBlob = myQueueItem;

}

Make sure you are adding this code to the run.csx file as in Figure 3-21 and save the

file.

1 using System;

X Di (O Refresh D Test/Run

T Upload

demofuncbinding \ queuedatatrigger \

rUun.csx

3 public static void Run(string myQueueItem, out st

Figure 3-21. Add the function logic to Code + Test

Now let’s test the Azure function. Navigate to the queue in the storage account and

click “Add message,” as shown in Figure 3-22.

59

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

Home > storagedemofunc >

rawdata

Queue
[/U |Search (Ctrl+/) | « () Refresh
T Overview Authentication method: Access X

. Access Control (IAM)

P Search to filter items...

Figure 3-22. Click “Add message” in the queue storage

Add a message in the queue, as in Figure 3-23.

Add message to queue

Message text *

Hello World

Expires in: *

_ 7 . Days N

D Message never expires

Encode the message body in Base64 (O

(| o |

Figure 3-23. Provide the message text and click OK

Go to the Azure Blob container in the storage account. You can find the processed
message here, as shown in Figure 3-24. You can download the file and verify the text in
the file.

60

CHAPTER 3 WHAT ARE TRIGGERS AND BINDINGS?

7 processeddata

"~ Container

|J"J Search (Ctrl+/) | « $ Upload |r_‘| Change access level (') Refresh

1 Overview Authentication method: Access key (Switch to Azure

Location: processeddata
A2 Access Control (IAM)

Search blobs by prefix (case-sensitive)

Settings
Access pelicy Name
Il Properties [] & 20e61979-af02-4a5d-b6f2-6af69fEdd 1c0.txt

Figure 3-24. Blob added in the Blob container

Summary

In this chapter, you learned the basics of triggers and bindings. You explored the
different triggers and bindings supported by functions. We then discussed a few of the
use cases for triggers and bindings. You learned how to create and enable triggers and
bindings for an Azure function using the Azure portal.

The following are the key takeaways from this chapter:

o Triggers define how the functions execute. They wake up functions
from their idle state and make them execute.

» You can configure a single trigger for an Azure function.

¢ You can use bindings to facilitate data exchange between these

services and functions.
e You can have multiple bindings configured for an Azure function.

¢ You do not need to write any code explicitly to implement triggers
and bindings. You need to write declarative configurations to enable
triggers and bindings and facilitate interaction with functions and
other services.

o The supported triggers and bindings depend on the runtime version
of functions. If none of the supported bindings matches your
requirements, you can create your own custom binding using .NET
and use it anywhere per your needs.

61

CHAPTER 4

OTP Mailer with Queue
Storage Trigger and
SendGrid Binding

You may encounter scenarios where you need to invoke Azure Functions whenever a
Queue Storage gets a message. Azure Functions will pick the message from the Queue
Storage and process it. You may also have scenarios where you have to execute an Azure
function’s business logic and then send an email from an Azure function. You can use
a Queue Storage trigger to invoke an Azure function and a SendGrid output binding to
send an email from Azure Functions. You can also use the Microsoft Graph API instead
of SendGrid to send mails using Azure Functions.

In the previous chapter, you learned all about the essential concepts of triggers
and bindings. You explored different types of triggers and bindings available for Azure
Functions. Let’s now explore how to implement a Queue Storage trigger and a SendGrid
binding for Azure Functions and build a one-time password (OTP) mailer using
SendGrid.

Structure of the Chapter

In this chapter, you will explore the following aspects of Queue Storage triggers and
SendGrid bindings:

o Getting started with Queue Storage triggers and use cases
o Building a sample application using a Queue Storage trigger

o Getting started with a SendGrid output binding and use cases

63
© Ashirwad Satapathi and Abhishek Mishra 2021

A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_4

https://doi.org/10.1007/978-1-4842-7122-3_4#DOI

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

e Building a sample application using a SendGrid output binding

e Creating an OTP mailer using a Queue Storage trigger and a
SendGrid output binding

Objectives

After studying this chapter, you will be able to do the following:
o Implement a Queue Storage trigger for Azure Functions

e Implement a SendGrid output binding for Azure Functions

Getting Started with a Queue Storage Trigger and
Use Cases

Queue Storage provides an excellent mechanism to decouple different application
components and make your application architecture loosely coupled. Each decoupled
application component can exchange data by sending messages to Queue Storage and
receiving messages from Queue Storage. You can break your application code into
smaller chunks and host them in functions, and each of these smaller chunks of code
running inside a function performs a specific task. These functions can communicate
among themselves using Queue Storage. An Azure function can process data and send
it to Queue Storage. Queue Storage can then invoke another Azure function that can
pick up the Queue Storage data and process it. The Queue Storage trigger can invoke an
Azure function whenever it gets a message and passes on the Azure function message.

The following are a few of the example scenarios where you can use a Queue Storage
trigger:

e The customer can place an order for a purchase using the user
interface. The user interface invokes a business service that places
the order as a Queue Storage message. The Queue Storage trigger
invokes an Azure function that picks the order and validates the stock
availability for the item that the customer has ordered.

e A customer can provide feedback for the service used in a user
interface. The user interface invokes a service that puts the feedback

64

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

in Queue Storage. An Azure function gets triggered by Queue Storage,
analyzes the customer feedback, and responds to customers with
corrective actions if needed.

o AnInternet of Things (IoT) application can monitor a factory floor’s
temperature and ingest the temperature into Queue Storage in an
event the temperature rises beyond a prescribed limit. Queue Storage
will then invoke an Azure function to analyze the temperature data
and invoke automation or take corrective action to cool down the
factory floor.

Build a Sample Application Using a Queue
Storage Trigger

Let’s implement a Queue Storage trigger for an Azure function. As a prerequisite, let’s
create a storage account and a Queue Storage to add a message. As soon as a message
gets added to the queue, it will trigger the function.

Go to the Azure portal and click “Create a resource,” as shown in Figure 4-1.

Azure services

=|= (%) 3

Create a Resource Azure Active
resource groups Directory

Figure 4-1. Create a resource

Search for storage account and click the search result “Storage account,” as shown in

Figure 4-2.

65

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

New

1 © storage account |

Storage account

famm = e

e il

Get started Windows Server 2016 Datacenter
Quickstarts + tutorials

Recently created

Al + Machine Learning Ubuntu Server 18.04 LTS
@ Learn more

Analytics

Figure 4-2. Select “Storage account”

Click Create, as shown in Figure 4-3.

Storage account =

Microsoft

Storage account

Microsoft
% % % % 7t 4.2 (1731 ratings)

Figure 4-3. Click Create
Select your Azure subscription, the resource group, and the location where you need

to create the storage account. Provide a name for the storage account. Click “Review +
create,” as shown in Figure 4-4.

66

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Create a storage account

Basics Advanced Networking Data protection Tags Review + create

Project details

Select the subscription in which to create the new storage account. Choose a new or existing resource group
manage your storage account together with other resources.

Subscrption [— |
Resource group * | (Mew) rg-book
Create new

Instance details

If you need to create a legacy storage account type, please click here

Storage account name (O * demoforqueuestorage |

Region (@ * (US) East US ||

< Previous MNext : Advanced >

Figure 4-4. Click “Review + create”

A validation check will be done for the configuration values provided for the storage
account, and if the check succeeds, you will get a message on the screen that the
validation passed. Once the validation passes, click Create, as shown in Figure 4-5. This
action will create the storage account.

67

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Create storage account

@ validation passed

Basics Networking Data protection ~ Advanced Tags Revi

Basics

Subscription —
Resource group (New) rg-book

Location East US

Storage account name demoforqueuestorage
Deployment model Resource manager

Account kind StorageV2 (general purpose v2)
Replication Read-access geo-redundant storag
Performance Standard

Networking

Connectivity method Public endpoint (all networks)
Default routing tier Microsoft network routing

< Previous Next > Download

Figure 4-5. Click Create

Go to the storage account once it gets created and then search for Queue in the
search box. Click Queues, as shown in Figure 4-6.

68

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

., demoforqueuestorage

Storage account

I/’) Queue| I : | « =", Open in Explorer

=: Storage Explorer (preview) @ Classic alerts in A
information, see

Queue service ~ Essentials
Resource group (chan
Location (change)

Subscription (change)

Figure 4-6. Click Queues

To create a queue in the storage account, click + Queue, as shown in Figure 4-7.

rm demoforqueuestorage | Queues =
Storage account

[,C Queue x| « (D Refresh

=z Storage Explorer (preview) Authentication method: 4

Queue service - P Search queues by prefi

™ Queues Queue

Figure 4-7. Add a queue

Provide a name for the queue and click OK, as shown in Figure 4-8.

Add queue

Queue name *

idemﬂqueue I
| -

Figure 4-8. Click OK

69

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Now let’s create an Azure function with a queue trigger enabled. Open Visual Studio
and click “Create a new project,” as shown in Figure 4-9.

+
h S Clone or check out code

Get code from an online repository like GitHub
or Azure DevOps

"@ Open a project or solution

Open a local Visual Studio project or .sin file

-, Open a local folder

Navigate and edit code within any folder

"'@ Create a new project

Choose a project template with code scaffolding
to get started

Continue without code -

Figure 4-9. Create a new project

Select the Azure Functions template. Click Next, as shown in Figure 4-10.

70

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

c# - All platforms u Cloud d

@ ASP.NET Core Web Application
De)

Project templates for creating ASP.MET Core web apps and web APIs for Windows,
Linux and macOS using .NET Core or .NET Framework. Create web apps with Razor
Pages, MVC, or Single Page Apps (SPA) using Angular, React, or React + Redux.

C# Linux macO5s Windows Cloud Service Web

@ Blazor App
Project templates for creating Blazor apps that that run on the server in an ASP.NET
Core app or in the browser on WebAssembly. These templates can be used to build
web apps with rich dynamic user interfaces (Uls).

c# Linux macO5 Windows Cloud Web

< > Azure Functions
A template to create an Azure Function project.

Ci# Azure Cloud

gRPC gRPC Service
A project template for creating a gRPC ASP.NET Core service using .NET Core.

cit Linux macQ5 Windows Cloud Service Web

=p== Worker Service

Back Next

Figure 4-10. Select the Azure Functions template

Provide a name for the project and click Create, as shown in Figure 4-11.

71

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Configure your new project

Azure Functions ¢ fwe Cloud

Project name

Function_QueueTriggerDemo

Location

ChUsers\Abhishek Mishra\source\repos

Solution name @
Function_QueueTriggerDemo

Place solution and preject in the same directory

Back

Create

Figure 4-11. Provide a project name and click Create

Select “Queue trigger” and provide the connection string name for the queue and

the queue’s name that will trigger the function. Provide demoforqueuestorage for the

name of the queue that you created earlier in this chapter. You need to add a key for

this connection string in the local.settings. json file in the solution and provide the

connection string for the key in the local.settings.json file. Click Create. A solution

with the queue-triggered function gets created. See Figure 4-12.

72

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Create a new Azure Functions Application

Azure Functions v3 (NET Core) -
A LF TUNCTON AT Wil DE TUN WABNEVES AN @VENT gNa receives a new event
Storage Account (AzureWeblobsStorage)

Event Hub trigger Storage Emulator >

A CF function that will be run whenever an event hub receives a new event
b Some capabilities may require an Azure SIOI'ElgC account.

@ Http trigger Coppection siring selting name
A C# function that will be run whenever it receives an HTTP request ConnectloQueue
loT Hub trigger Queue name
A C# function that will be run whenever an iot hub receives a new event on the event hub demogueud
endpoint

Service Bus Queue trigger

A C# function that will be run whenever a message is added to a specified Service Bus queus

m Service Bus Topic trigger v

Updates are ready Refrash

Back Create

Figure 4-12. Select “Queue trigger”

Listing 4-1 shows the code for the Function1.cs file. In the Run method, a method
parameter called myQueueItem gets created. The myQueueItem parameter is decorated
with the QueueTrigger attribute. The QueueTrigger attribute takes the storage account’s
queue name that can trigger this function and the connection string’s name that is in the
local.settings.json file

Listing 4-1. Functionl.cs Code

using System;

using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Microsoft.Extensions.Llogging;

namespace Function_QueueTriggerDemo

{

public static class Functioni

{

73

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

[FunctionName("Function1")]

public static void Run([QueueTrigger("demoqueue”,
Connection = "ConnectToQueue")]string myQueueltem,
ILogger log)

log.LogInformation($"C# Queue trigger function processed:
{myQueueItem}");

Now let’s add the connection string key to the local.settings.json file. Go to the
storage account that you created in the Azure portal and click “Access keys,” as shown in
Figure 4-13.

- demoforqueuestorage
- Storage account
[/C IFSE.'arch (Ctd+/)] « ="z Open in Explore|
= Overview - @ Classic alerts in A

information, see|
B Activity log .

~ Essentials
@ Tags Resource group (cha
&2 Diagnose and solve problems Location (change)
A, Access Control (IAM) Subscription (change
W Data migration Subscription 1D
Events Disk state

.) Secondary location
=z Storage Explorer (preview)

Tags (change) :
Settings

Access keys Properties Mon

Figure 4-13. Click “Access keys”

Click “Show keys.” Copy the connection string, as shown in Figure 4-14.

74

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Storage account name

' demoforqueuestorage
Show keys
key1 CD

LEY

oo

oo

Figure 4-14. Copy the connection string

Go back to the Azure function solution in Visual Studio and open the local.
settings.json file, as shown in Listing 4-2. Add the key for the connection string.
Replace the placeholder [value] with the connection string value that you copied from
the Azure portal.

Listing 4-2. Local.settings.json Code

{
"IsEncrypted": false,

"Values": {
"AzurelWebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER RUNTIME": "dotnet",
"ConnectToQueue": "[value]"
}
}

75

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Now run the solution. Once the function starts running, go to the Azure Queue
Storage and add a queue message to trigger the function. Go to Queue Storage in the
Azure portal and click “+ Add message,” as shown in Figure 4-15.

demoqueue

Queue
|;) lSearch (Ctrl+/) | « () Refresh |+ Add message
7 Overview Authentication method: Access

A Control (IAM
%D\ GRS el) O Search to filter items...

Settings Id Messag
Access policy No results
© Metadata

Figure 4-15. Add a message to the queue

Provide some message and click OK. You can configure when the message expires
in the queue. In this case, the message will expire in seven days. You can set the “Expires
in” value to configure the message expiration, as shown in Figure 4-16.

Add message to queue

Message text *

ITest Message| I o

Expires in: *

| 7 . Days ~

[:I Message never expires

Encode the message body in Base64 (O

Figure 4-16. Click OK

76

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

The Azure function gets triggered, and you can see that the message gets logged in
the debug console of Visual Studio, as shown in Figure 4-17.

B C\Users\Abhishek Mishra\AppData\LocalhAzurefunctionsTools\Releases\3.20.0\cli_x64\func.exe

Wzure Functions Core Tools
Kore Tools Version:

3.8.3284 Commit hash: 98bc25e668274edd175al1647fe5a%
Function Runtime Version: 3.0.15371.0

[2021-82-14T@5:02:13.9787] Found

~unctions:
Functionl: queueTrigger
For detailed output, run func with --verbose flag.

[20821-02 14TGS:92:2'§.9942] lost

[£2.965Z] Executing 'Functionl’

[2021-02-14T@5:05:20,345Z] Trigger Details: Messageld: 1549a57¢
ime: 14-©2-2021 ©5:04:51 +86.6¢

[2021-02-14705:05:20.3522] |C# Queue trigger f
[2021-02-14T@5:05:20.3707] |Fxec

Figure 4-17. Function execution output

Getting Started with a SendGrid Output Binding and
Use Cases

You may have a scenario where the function will process the business logic and then
send the processing output in an email to the intended recipients. To address this
requirement, you can use SendGrid as an output binding. You do not need to implement
much code to send an email from an Azure function. You just need to declaratively
configure SendGrid as an output binding and send emails from the Azure Functions
service. SendGrid is a third-party email delivery service that is available as an Azure
service. You can spin up a SendGrid account in the Azure portal with a few clicks and
start using it.

The following are a few of the example scenarios where you can use SendGrid:

¢ In the case of an e-commerce website, an Azure function can send an
email to the customer once it processes the order.

77

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

o Inthe case of an IoT application monitoring the factory floor’s
temperature, an Azure function can check for an abnormal
temperature and send an email to the concerned team to take

corrective action.

o Inareporting application, an Azure function can process a report
and send the report data in an email.

o Inthe case of a customer feedback management system, the Azure
function analyzes the customer feedback. It sends an email with the
necessary corrective steps to the back-end team to take action.

Build a Sample Application Using the SendGrid
Output Binding

Let’s add a SendGrid output binding to the Azure function you developed earlier. You
have already created a Queue Storage that will trigger the Azure function. Now let’s
create a SendGrid service in the Azure portal. Go to the Azure portal and click “Create a

resource,” as shown in Figure 4-18.

Azure services

1 & o
Create a Resource Azure Active
resource groups Directory

Figure 4-18. Create a resource

Search for sendgrid and click the search result for SendGrid, as shown in Figure 4-19.

78

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

— Microsoft Azure 2 Search resources, services, and docs (G+/)

Home >

New

| sendgrid |

SendGrid

C e ——— - ———

Get started Windows Server 2016 Datacenter
Quickstarts + tutorials

Recently created

Figure 4-19. Select SendGrid

Click Create, as shown in Figure 4-20.

Home > New >

Marketplace

Showing results for 'SendGrid',

Service Providers

Showing 1 to 3 of 3 results.

Categories
Get Started Sanaceid
Al + Machine Learning SendGrid
Analyfics Twilio SendGrid
Blockchain No rating
Compute Developer Service
Eliminate your email headaches and
Containers save money. The email infrastructure
of tomorrow, delivered today
Databases

°

Figure 4-20. Click Create

79

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Provide the subscription details, resource group, location, and account details to
access the SendGrid account, as shown in Figure 4-21.

Create SendGrid Account

SendGrid

Basics Tags Review + Create

Configure your SendGrid Account to deliver customer communication
cloud. Learn more ©

Project details

Subscription *
Resource group * © ‘ (New) rg-sendgrid
Create new
Location * [(US) East US

Account details

Name * l abhisekmisra
Password * (@O [srrveses
Confirm password * [--------

Figure 4-21. Provide the basic details

Provide your first name, last name, company email, company name, and website.

Click “Review + create,” as shown in Figure 4-22.

80

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Create SendGrid Account

SendGrid
Pricing Tier Bronze
40,000 email/month
Change plan

Contact details

The provided information will be used as contact info for support agents

First Name * | ABHISHEK

Last Name * | MISHRA

Email * r |
Company * | test

Website * | test

[e oo r—

Figure 4-22. Provide the contact details

Click Create, as shown in Figure 4-23.

81

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Create SendGrid Account

SendGrid

o Validation passed.

Basics Tags Review + Create

Overview
SendGrid Account Bronze
B by SendGrid $9.95 per month
Basics
Subscription |
Resource group rg-sendgrid
Name abhisekmisra

Contact details

Figure 4-23. Click Create

Once the SendGrid service gets created, navigate to the service in the Azure portal.
You need to create a sender identity that you can send emails from using the SendGrid
account. Click Sender Identity, as shown in Figure 4-24. You will be navigated to the
SendGrid portal.

Home > rg-sendgrid >

.. abhisekmisra =

SendGrid Account

L2 Search (Ctrl+/) | « li] Delete
& Overview o' Manage | o' Sender Identity
E Activity log

~ Essentials
fa Access control (IAM)
Resource group (change)

€ Tags rg-sendgrid

Figure 4-24. Click Sender Identity

82

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Click Create a Single Sender, as shown in Figure 4-25.

Welcome, ABHISHEK!

To get up and running guickly, please follow the steps outlinad below.

Send your first emails with Twilio SendGrid

Create a sender identity

Before sending email, you'll need to create a sender identity. There are two ways to do this,

but we recommend creating a Single Sender to get set up quickly and test your email

integration.

Figure 4-25. Create a sender

Provide your information for the email details. SendGrid uses these details to send
emails. Click Create, as shown in Figure 4-26.

From Name +
Abhishak

From Email Address »

ReplyTo ¢

Company Address »

Company Address Line 2

City » Stale

Select State

I

Zip Code Country +
400708 India
Mickname *

Mickname is for your reference only; this field will not be displayed to recipients.

Cancel Create

Figure 4-26. Provide the sender details
83

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

You will get an email for verification in the email address you specified while creating
a sender identity. Verify the email. Once the sender identity gets verified, go to the
SendGrid service in the Azure portal and click Manage, as shown in Figure 4-27.

Home >
P abhisekmisra =<
o SendGrid Account
|,-'-"' Search (Ctrl+/) « li] Delete
E Activity log
~ Essentials

A Access control (IAM)
Resource group (change) : rg-sendgrid

¢ Tags Location : EastUS

&P Diagnose and solve problems Subscription (change) :_
Settings Subscription 1D E |
25 properties Tags (change) : Click here to add

Figure 4-27. Click Manage

You will get navigated to the SendGrid portal. Click API Keys, as shown in Figure 4-28.

Settings b

Account Details

Alert Settings

APl Keys

Inbound Parse

Figure 4-28. Click API Keys

Create an API key. Copy the API key that you created. You will use this in your Azure
function code. Make sure you select Full Access for API Key Permission, as shown in
Figure 4-29. This will help you perform all the necessary HTTP actions such as GET,
PATCH, PUT, DELETE, and POST for the SendGrid endpoint.

84

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Create API Key

API Key Mame »

MyKey

APl Key Permissions®

Full Access
2,
° CH Allows the AP key tc

billing and Email Add

:ET, PATCH, PUT, DELETE, and POST endpoints for all parts of your account, excluding

Restricted Access

o
Custormize levels of access for all parts of your account, excluding billing and Email Address Validation
Billing Access

&

Allows the API key to access billing endpoints for the account. (This is especially useful for Enterprise or Partner
customers looking for more advanced account management.)

i

Figure 4-29. Create an API key

Now let’s open Visual Studio and the Azure function project you created earlier. Add
the following NuGet package to the function project:

o Microsoft.Azure.WebJobs.Extensions.SendGrid

Modify the Functioni.cs code as illustrated in Listing 4-3. You are adding an
output binding for SendGrid using the SendGrid attribute for the method
parameter. The SendGrid attribute takes the name of the API key settings in the
local.settings.json file

Listing 4-3. Functionl.cs Code

using System;

using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Microsoft.Extensions.Logging;
using SendGrid.Helpers.Mail;

85

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

namespace Function QueueTriggerDemo

{

public static class Functioni
{
[FunctionName("Functioni")]
public static void Run(
[QueueTrigger("demoqueue”, Connection = "ConnectToQueue")]
string myQueueItem,
[SendGrid(ApiKey = "SendGridConnection™)]
out SendGridMessage message,
ILogger log)

message = new SendGridMessage();

//myQueueltem should have TO email address

//We are adding TO for the email
message.AddTo(myQueueItem);

//Mail Body

message.AddContent("text/html", "This is Demo Mail");
//From Mail ID. Shuld be exactly same as

//that in Sender Identity of Send Crid
message.SetFrom(new EmailAddress("abc@mycompany.com"));
//Subject for the mail

message.SetSubject("Demo Mail");
log.LogInformation($"Email Triggered to : {myQueueItem}");

Modify the local.settings. json file as shown in Listing 4-4. You need to add the
key name for SendGrid. Replace [KeyValue] with the API key that you created in the
SendGrid portal earlier. Replace [Value] with a Queue Storage connection string.

Listing 4-4. Local.settings.json Code

{
"IsEncrypted": false,

"Values": {

86

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

"AzurelWebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER RUNTIME": "dotnet",
"ConnectToQueue": "[Value]",

"SendGridConnection": "[KeyValue]"

Now run the Azure function in Visual Studio. Whenever you add any message to
the Queue Storage, the Azure function gets triggered, and a message is sent to the email
address specified in the queue message. Make sure you add an email address in the

message to the queue, as shown in Figure 4-30.

Add message to queue

Message text *
| m—— @ y2hoo.com |

Expires in: *

[7] [Days hd
[[] Message never expires

Encode the message body in Baseed O

Figure 4-30. Add a message to the queue

The Azure function gets triggered, and an email gets delivered to the email address

specified in the queue message, as shown in Figure 4-31.

87

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

B3 C:\Users\Abhishek Mishra\AppData\Local\AzureFunctionsTools\Releases\3.20.0\cli_x64\func.exe

Azure Functions Core Tools
Core Tools Version: 3.8.3284 Commit hash: 98bc25e668274edd175a1647
Function Runtime Version: 3.8.15371.8

[2621-02-23T17:50:18.533Z] Found C:\Use

Functions:

Functionl: queueTrigger

For detailed output, run func with
[2021-82-23T17:50:29.626Z] Host loc oy instance ID '©88E
[2021-82-23T17:51:099.2207] Executing ' (Reason='New queue mess

ASb4-abf8-20e347ebf64c)
[2021-82-23T17:51:09.
ime: 23-82-2021 17:51:€
[2021-82-23T17:51:09.23
[2021-02-23T17:51:10

Figure 4-31. Function execution output

Create an OTP Mailer Using a Queue Storage Trigger
and SendGrid Output Binding

Now let’s modify the Azure function code to send an OTP. You need to generate a
random number and send it in the message body. Whenever a message with an email
address as a value gets added in the queue, the Azure function gets triggered, generates
arandom number, and sends it in the email body to the email address specified in the
queue message. Replace the code in Functioni.cs with the code shown in Listing 4-5.

Listing 4-5. Functionl.cs Code

using System;

using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Microsoft.Extensions.lLogging;
using SendGrid.Helpers.Mail;

88

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

namespace Function QueueTriggerDemo

{

public static class Functionl
{
[FunctionName("Functioni")]
public static void Run(
[QueueTrigger("demoqueue”, Connection = "ConnectToQueue")]
string myQueueItem,
[SendGrid(ApiKey = "SendGridConnection™)]
out SendCGridMessage message,
ILogger log)

//Generate OTP

Random random = new Random();

int num = random.Next(10000);

message = new SendGridMessage();

//myQueueItem should have TO email address

//We are adding TO for the mail
message.AddTo(myQueueItem);

//Mail Body with random One Time Password (OTP) generated
message.AddContent("text/html"”, "One Time Password for your
transaction : " + num.ToString());

//From Mail ID. Shuld be exactly same as that in

//Sender Identity of Send Grid

message.SetFrom(new EmailAddress("abc.mycompany.com"));
//Subject for the mail

message.SetSubject("OTP Mail - Valid for 10 minutes");
log.LogInformation($"Email Triggered to : {myQueueItem}");

89

CHAPTER 4 OTP MAILER WITH QUEUE STORAGE TRIGGER AND SENDGRID BINDING

Summary

In this chapter, you learned how to work with a Queue Storage trigger and SendGrid
output binding using Visual Studio. You then used these concepts to build an OTP mailer
Azure function that gets triggered whenever you add a message to the Queue Storage
and send an email using the SendGrid output binding.

The following are the key takeaways from this chapter:

e You can trigger an Azure function using a Queue Storage trigger.
The function gets triggered whenever a message gets added to the
Queue Storage.

e You can send an email from an Azure function using the SendGrid
output binding.

e You can declaratively configure a Queue Storage trigger and the
SendGrid output binding without having to write much code.

e Visual Studio provides a template to work with a Queue Storage
trigger.

e You can enable only one SendGrid account per Azure subscription.
You need to enable Azure SendGrid using only a company email
address. A personal mail address will not work when creating a
SendGrid service in the Azure environment and integrating it as a
binding in Azure function.

e The free tier for SendGrid is not available in Azure, so you must use
a pay-as-you-go subscription instead of a trial subscription or a
subscription that offers free monthly credits.

90

CHAPTER 5

Build a Report Generator
with a Timer Trigger and
Blob Storage Bindings

You may have had to run certain services of your application at uniform time intervals
for a defined frequency. Often such service executions do not take much time to
complete. So, allocating dedicated resources for such applications will result in
inefficient use of provisioned resources, resulting in higher costs.

Using a timer trigger, you can develop such scheduled-based tasks to trigger Azure
functions to avoid providing dedicated infrastructure resources. Along with invoking
such services for a particular frequency at a uniform time interval, you may also need
to store the insights or data gathered by the service in persistent storage. You can
achieve that with a Blob Storage binding in Azure Functions to write into Azure Blob
Storage.

In the previous chapter, you learned all about the essential concepts and the use
cases of a queued-triggered Azure function and SendGrid output binding by building
a one-time password (OTP) mailer. Let’s explore how to implement a timer trigger
and Blob Storage bindings for the Azure Functions service by building a report
generator.

91
© Ashirwad Satapathi and Abhishek Mishra 2021

A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_5

https://doi.org/10.1007/978-1-4842-7122-3_5#DOI

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Structure of the Chapter

This chapter will explore the following aspects of timer triggers and Blob Storage input
and output bindings:

o Getting started with timer triggers and use cases

e Building a sample application using a timer trigger

o Getting started with Blob Storage bindings

o Building a sample application using a Blob Storage binding

o Creating a report generator using Blob Storage input and output
bindings

Objectives

After studying this chapter, you will be able to do the following:
o Implement a timer trigger for Azure Functions

o Implement Blob Storage input and output bindings for Azure
Functions

Getting Started with Timer Triggers and Use Cases

Using a timer trigger is an excellent way to build a scheduling application that executes
specific tasks at uniform intervals. You can use timer triggers to build cost-effective cron
jobs in Azure that execute for a short time as you pay only for your Azure function’s
execution time.

A word of caution here: you should not consider using Azure Functions to run
long-running cron jobs while you are using a Consumption Plan because the maximum
timeout duration of a function app is 10 minutes. But with a Premium Plan, you can
overcome the timeout limits faced with the Consumption Plan as the default timeout is
30 minutes, and theoretically it can be configured to be unlimited. If you are hosting your
function in a dedicated App Service Plan or App Service Environment, you can configure
the trigger time depending on your requirements. Alternatively, if you have an existing

92

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

App Service Plan, you can write a web job that is configured as run on a schedule to
execute long-running cron jobs.

Unlike other trigger types, the timer trigger comes out of the box along with an HTTP
trigger in Microsoft.Azure.WebJobs.Extensions version 2.x and newer.

The following are a few use cases where you can use a timer trigger:

o The customer can use a timer-triggered function to work as a
schedule-based report generator to gather data from data sources,
build a report depending on the business requirements, and later
save the report in persistent storage like Azure Blob Storage or an
AWS S3 bucket for further use.

o The customer may want to send weekly newsletters to their end
users. There can be a mailing list containing all the end users who are
recipients of the newsletter. The timer-triggered function solves this

business requirement well.

o The customer may have monthly or yearly membership plans for its
end user and may want to revoke the membership status of all the
users who didn’t renew their plans at the end of each month or year.
You can use a timer-triggered function to deactivate or delete all such
users’ records depending on the business requirements.

A timer-triggered function uses the NCrontab expression to define the schedule
expression. NCrontab expressions are similar to cron expressions. The NCrontab
expressions have an additional sixth field to define the seconds in the schedule

expression, making them different from cron expressions.

Note Azure Functions does not support five cron expression fields. Timespan is
supported, but only while you are running your functions inside an App Service
Plan.

This is the structure of a NCrontab expression:
{seconds} {minute} {hour} {day} {month} {day-of-week}

Each of the fields in an NCrontab expression can have one of the types shown in
Table 5-1.

93

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Table 5-1. Different Types of NCrontab Expressions with Examples

Type Example When Trigger
A specific value 02 ***x Once every hour of the day at minute 2 of each hour
All values (*) 0 *2**x At every minute in the hour beginning at hour 2

Arange operator (-) 1-7 * * *k ok ok 7 times a minute: at 1 through 7 seconds
during every minute of every hour of each day

An interval value 0 */5 * * ¥ % 12 times an hour: at second 0 of every

operator (/) 5th minute of every hour of each day

A set of values 1,5,10 * * * * * Three times a minute: at seconds 1, 5,

operator (,) and 10 during every minute of every hour of each day

Build a Sample Application Using a Timer Trigger

You will be creating a timer-triggered Azure function in the Azure portal with the portal
editor’s help in this section.

Go to the Azure portal and search for function app in the search bar. Click Function
App, as shown in Figure 5-1.

£ function app|

Services See all

7> Function App I

Figure 5-1. Click Function App

Now click Create to create a new function app, as shown in Figure 5-2.

94

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Function App =

Default Directory

@ Manage view O Refresh i Export to CSV °"§ Open query

| Filter for any field... | Subscription == all Resource group == all X

Showing 1 to 1 of 1 records.

D Name T Status Ty Location Ty

[:' <> tst-function-app Running South India

Figure 5-2. Create a function app

Fill in all the details required for creating your function app like the resource group,

function app name, region, and runtime stack, to name a few, as shown in Figure 5-3.

Create Function App

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subscription * (@ | ——— M |
" Resource Group * (O I (New) ch-05-functions ~ I
Create new

Instance Details

Function App name * | tst-timer-app " l
azurewebsites.net

Publish * (® code JO Docker Container

Runtime stack * | neT ~|

Version * | EX ~ |

Region * | Central India M |

< Previous Next : Hosting >

Figure 5-3. Provide the necessary configuration details of the function app

95

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Once you have filled in all the required fields, click Next : Hosting.

You will have to fill in the storage account name for your function app, your
operating system, and, finally, the plan type. I have created a new storage account for
this function app. The operating system selected is Windows for this function app. Since
you want your timer-triggered function to be serverless, let’s go with the Consumption
Plan in this example.

Once you have filled in all these details, click Next : Monitoring, as shown in Figure 5-4.

Create Function App

Basics Hosting Monitering Tags Review + create

Storage

When creating a function app, you must create or link to a general-purpose Azure Storage account that supports Blobs,
Queue, and Table storage.

Storage account * I (New) storageaccountch05faf2e s I
Create new

Operating system

The Cperating System has been recommended for you based on your selection of runtime stack.

Operating System * O Linux

Plan

The plan you choose dictates how your app scales, what features are enabled, and how it is priced. Learn more B

Plan type * @ I Consumption (Serverless) R I

| < Previous | | Next:Monitoring > ||

Figure 5-4. Provide the hosting details

You will enable Application Insights for your function app in the Monitoring section
and create a new insight for the function app. You enable Application Insights for the
function app because it helps you view your functions’ log stream data.

Application Insights also helps you gather telemetry data to process and figure out
any anomalies in your function execution. We will discuss it briefly Chapter 10.

Once you have enabled Application Insights and selected one of the existing insights
or created a new one for the function app, click Next : Tags, as shown in Figure 5-5.

96

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Create Function App

Basics Hosting Monitoring Tags Review + create

Application Insights is a code-less attach to provide detailed observability in to your application. Learn more 3

Application Insights

Enable Application Insights * O No @ Yes
Application Insights * I (Mew) tst-timer-app (Central India) v I
Create new

Central India

| < Previous | I Next : Tags > I

Figure 5-5. Enable Application Insights

Now, you will be asked to assign tags for the function app. This step is optional. It is
a best practice to have tags assigned for all your resources. It helps in cost management
and in the logical grouping of resources. Once you have filled in the tags along with their
values, click “Next : Review + create,” as shown in Figure 5-6.

97

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Create Function App

Basics Hosting Monitoring Tags Review + create

Tags are name/value pairs that enable you to categorize resources and view consolidated billing by applying the same
tag to multiple resources and resource groups.

Mote that if you create tags and then change resource settings on other tabs, your tags will be automatically updated.

MName (O Value @ Resource

I I ' I I[4 selected v

Review + create | < Previous | I Mext:Review + create > |

Figure 5-6. Provide the tag details

Now you will see a screen with a summary of all the details you filled in to create the
function app, and validation will be done to check whether all the details are valid. Once
the validation process is completed and is successful, you need to click Create, as shown

in Figure 5-7.

98

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Create Function App

Basics Hosting Monitoring Tags Review + create

Summary

¢/~ Function App

77" by Microsoft
Details
Subscription €79d5442-cdb7-44d3-8c9e-d589978e561d
Resource Group ch-05-functions
Name tst-timer-zpp
Runtime stack NET 3.1
Hosting

Storage (New)

Storage account storageaccountch05faf2e

Next > Download a template for automation

Figure 5-7. Click Create

While your function app is being deployed, you will be redirected to a screen like
the one shown in Figure 5-8. Once the deployment of all your function app resources is
completed, you will see an update, as highlighted in Figure 5-8. Click “Go to resource” to
navigate to the function app.

99

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

@ Your deployment is complete
Deployment name: Microsoft.Web-FunctionApp-Portal-fébd3bf1-b...

Subscription: G

Resource group: ch-05-functions

~ Deployment details (Download)
~ Next steps

Add a function. Recommended

Manage deployments for your app. Recommended

Go to resource

Figure 5-8. Click “Go to resource”

Now you will be redirected to the Functions screen. Click Functions and then click
Add to create a new Azure function, as shown in Figure 5-9.

(£} tst-timer-app | Functions

Function App
| P Search (Ctrl+/) | « o Refresh @ Delete
4> Qverview =
@ Activity log I A Filter by name...
Ao, Access control (1AM)
& Tags Name T
& Diagnose and solve problems o resuls.
@ Security

” Events (preview)

Functions

I £} Functions I

App keys

Figure 5-9. Click Add

Now let’s select “Develop in portal” as the development environment, select “Timer
trigger” as the function template, and click Add, as shown in Figure 5-10.

100

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Add function X

Select development environment

Instructions will vary based on your development environment. Learn more

Development environment | © Develop in portal 2

Select a template

Use a template to create a function. Triggers describe the type of events that invoke
your functions. Learn more

Y Filter

HTTP trigger A function that will be run whenever it receives an HTTP
request, responding based on data in the body or query
string

Timer trigger A function that will be run on a specified schedule I

Azure Queue Storage trigger A function that will be run whenever a message is added
to a specified Azure Storage queue

Azure Service Bus Queue A function that will be run whenever a message is added’

trigger to a specified Service Bus queue

E

Figure 5-10. Select “Timer trigger” and click Add

Azure will generate a timer-triggered Azure function called TimerTrigger1, as shown
in Figure 5-11. By default, the function will be enabled. This function will consist of these
three files:

e TUN.CSX
o function.json

e Teadme.md

101

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

run.csx is a C# script that contains the business logic of your Azure function, while
function.json has all the configuration details of your function’s trigger, binding, and
other configuration settings. readme .md contains a small description about what this
function does.

Now click Code + Test, as shown in Figure 5-11, to view the run. csx code; refer to
Listing 5-1 for the code present in the run.csx file.

(£} TimerTrigger1 »

Function
|,D Search (Ctrl+)) l « " Enable © Disable [Delete [Get Functionurl () Refresh
1A} Overview ~ Essentials
Function app 1 tst-timer-app
Developer
Status : Enabled
Resource group (change) : ch-05-functions
* Integration Subscription (change) : I
& Monitor Subscription ID =

Function Keys

Figure 5-11. Select Code + Test

The boilerplate code generated by Azure for your timer-triggered function currently
writes a message into the log every five minutes.

Listing 5-1. run.csx Code

using System;
public static void Run(TimerInfo myTimer, ILogger log)
{

log.LogInformation($"C# Timer trigger function executed at:
{DateTime.Now}");

The function and the trigger type’s schedule expression and other details are
mentioned in the function. json file. Listing 5-2 shows the content of function.json.

102

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Listing 5-2. function.json Code

{
"bindings": [
{
"name": "myTimer",
"type": "timerTrigger",
"direction": "in",
"schedule": "0 */5 * * * *"
}
]
}

You can modify the function name along with the schedule expression in the
function. json file. Alternatively, you can do the same by clicking Integration in the
Developer section of your function screen and then clicking the trigger, as shown in
Figure 5-12.

~ TimerTrigger1 | Integration

Function
| P Ssearch (Ctrl+/) ‘ « () Refresh
il Overview
Developer Integration
B Code + Test Edit the trigger and choose from a selection
I ” Integration I
& Monitor Trigger

Function Keys

Timer (myTimer)

Figure 5-12. Click Integration

Now, you will see a screen with all the function details as mentioned in function.
json. You can modify the name of your function by modifying the timestamp modifier
name and do the same with the schedule expression by modifying the schedule value, as
shown in Figure 5-13.

103

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Edit Trigger
)(Discard [i] Delete

Binding Type

| Timer v |

Timestamp parameter name*®©

| myTimer |
Schedule*®
l 0 t/S 'k I

Figure 5-13. Modifying function settings

Now that you have created and understand your timer-triggered Azure function

and looked into ways to customize it, let’s see how it works. Since it works on a schedule

and logs a message containing the time of execution when it executes, you will see it in

the log stream. To view the log stream, you will have to click Monitor in the Developer

section. Then click Logs to see the messages logged by your function after it executes, as

shown in Figure 5-14.

TimerTrigger1 | Monitor

Function
.P Search (Ctrl+/) l «
Invecations Logs
fil Overview —
Developer B Filesystem Logs ~ % Log Level ~ [Stop L-j Copy X Clear
= e + Ti
Code = Test Connected!
* Integration 2021-02-28711:24:27 Welcome, you are now connected to log-streaming service.
The default timeout is 2 hours. Change the timeout with the App Setting
In Monitar | SCM_LOGSTREAM_TIMEOUT (in seconds).
) 2021-82-28T11:25:00.016 [Information] Executing ‘Functions.TimerTriggerl
Function Keys (Reason="Timer fired at 2021-82-28T11:25:00.08159376+80:08", Id=5ecc8734-979d-

4de6-boa2-e44293ebb2fe)
2/28/2021 11:25:00 AM

(Succeeded, Id=5ecc8734-979d-4d06-boa2-044293eb62fe, Duration=8ms)

2021-082-28T11:25:00.016 [Information] C# Timer trigger function executed at:

2821-82-28T711:25:80.016 [Information] Executed 'Functions.TimerTriggerl’

Figure 5-14. View logs

104

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Note While deploying timer-triggered functions to the production environment,
make sure the runOnStartup property is set to false. If set to true, your
function will be invoked every time it’s scaled out or whenever the function app
restarts due to function changes.

You can also see the number function invocation along with their execution time

and status, i.e., success or failure, in the Monitor section of your function screen. You
can view these details by going to the Invocation tab instead of the Logs tab, as shown in

Figure 5-15.

Invocations Logs

Success Count

(v E]

Last 30 Days

Error Count

Do

Last 30 Days

Invocation Traces

The twenty most recent function invocation traces. For more advanced analysis, run the query

Date (UTC)

2021-02-28 11:45:00.007
2021-02-28 11:39:59.997
2021-02-28 11:34:59.998

2021-02-28 11:30:00.007

Figure 5-15. View the function invocation details

Success

@ success
@ success
@ Success
@ success

Result Code

0

0

0

0

Duration (ms)
]
2
1

1

To learn more about timer-triggered functions, we recommend you visit https://
docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer.

105

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Getting Started with Blob Storage Bindings
and Use Cases

You may have come across scenarios where the function needs to store the processed
data in a persistent storage after execution or needs some data to process a request and
return a response. To address such requirements, you can use Blob Storage bindings.
Blob Storage bindings provide a declarative way of connecting your functions to Azure
Blob Storage and performing various operations on it. An Azure function supports both
input and output bindings for Azure Blob Storage. These bindings help you focus more
on solving business problems instead of focusing on configuring the boilerplate code to
set up the SDKs to interact with Blob Storage.

The following are a few example scenarios where you can Blob Storage bindings:

o Inareporting application, Azure Functions processes the data from
different data sources at a defined time each day and then stores it in
Blob Storage for further reference by other users.

e Inthe case of a serverless API, an HTTP-triggered Azure function
may need to return files or its content whenever required as per the
business requirements. You can use a Blob Storage input binding to
get a file from Blob Storage to send it back to the user as a response.

o Inthe case of a banking system, an Azure function can generate an
account statement every month and put it in Blob Storage using the
output binding and then also use a Blob Storage trigger and SendGrid
output binding to send the generated account statement to the end
user over email.

Note While using the in-portal editor, you cannot use attribute-based bindings.
You will have to define the properties of your triggers and bindings in the
function. json file. Alternatively, you can also define and modify them in the
Integration section of Azure Functions in the portal.

106

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Build a Sample Function Using a Blob Storage
Binding
You will be creating a timer-triggered Azure Function with a Blob Storage output binding
in the Azure portal with the portal editor’s help in this section. You will integrate the
Blob Storage binding with the timer-triggered function that you created in the previous
section. You are going to use a Blob Storage output binding to create a new file in the
container every time your timer-triggered function executes, along with writing the
message you used to log earlier inside this file.

Let’s go to the timer-triggered function in the portal and click the Integration option
available in the Developer section of the screen. You will see a screen similar to the one
shown in Figure 5-16.

= TimerTrigger1 | Integration

() Refresh

il Overview

Developer Integration
B code + Test Edit the tragger and choase from a selection of inputs and outputs for your functicn. including Azure Blob Sterage. Cosmos DE and others,
I " Integration I
@ monitor Trigger
Fariceion: Ky Timer (myTimer)
f Function [=+ Outputs
TimerTriggert
2l Inputs

+ Add cutput

+ Add input

Figure 5-16. View the Integration options for the function

Since you have already defined the trigger type while creating the function, the
trigger is updated here as Timer. As you don’t have any input and output bindings
configured for this function as of now, you are not able to see “No inputs defined” and
“No outputs defined” on the screen.

Now you will need to click Add Output to add an output binding for this function.
Once you click, you should see a screen similar to the one shown in Figure 5-17. You
have to select Azure Blob Storage as the binding type, and then you will need to name
the Blob parameter name. Then define the path of the container when you want to create
a file every time your function executes along with the name.

107

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Create Output X

Start by selecting the type of output binding
you want to add.

Binding Type

I Azure Blob Storage e I

Azure Blob Storage details

Blob parameter name* @

[outputBlob I
Path*@
I outcontainer/{rand-guid}.txt I

Storage account connection*®

I AzureWeblobsStorage ~ I

Figure 5-17. Add a Blob Storage output binding

In your case, the container name is outcontainer, and the filename is defined
as {rand-guid}.txt. The {rand-guid} is a binding expression that creates a unique
GUID. You can also use the {DateTime} binding expression to create a file with the name
as the value of DateTime.UtcNow. Finally, you select the storage account connection. This
is the name of the app setting that contains the storage connection string to use for this
binding. By default, it points to the storage account that you created while creating the
function app. Alternatively, you can map it to a different storage account too, depending
on your requirements. But you need to make sure that you configure the connection
string of a general-purpose storage account and not a Blob Storage account.

By default, you have only two containers inside the storage account that you created
while creating the function app, as shown in Figure 5-18. You can see these containers
inside the storage account by going to the Storage Explorer and then by clicking the Blob
containers.

108

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

== storageaccountchO5faf2e | Storage Explorer

-
Storage account

lp Search (Ctrl+/) ‘ « ‘ |
= Overview = Bﬂ BLOB CONTAINERS
B Activity! ™ azure-webjobs-hosts
ctivity log
™ azure-webjobs-secrets
e b |- FILE SHARES
Vi Diagnose and solve problems > Bl QUEUES
A, Access Control (IAM) b G TABLES
W Data migration

I =z Storage Explorer (preview) I

Figure 5-18. View the existing Blob containers

Asyou can see from Figure 5-18, you don’t have any container called outcontainer
that you have passed in the path of your output binding as of now. In such cases, the
function creates an outcontainer on the fly in the storage account while executing to
store the file.

Now that you have configured the output binding for your timer-triggered function
app in the Integration window, let’s take a look at your function. json file. You will
see that a new code snippet has been added to your function. json file, as shown in
Listing 5-3. Now it contains all the attributes required to add a Blob Storage output
binding to your function. Any changes made in the Integration window will be reflected
in the function. json file of your timer-triggered function.

Listing 5-3. Updated function.json Code
{

"bindings": [
{
"name": "myTimer",
"type": "timerTrigger",
"direction": "in",
"schedule": "0 */5 * * * *"

109

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

}s
{
“name": "outputBlob",
"direction": "out",
"type": "blob",
"path": "outcontainer/{rand-guid}.txt",
"connection": "AzureWebJobsStorage"
}

In the code shown in Listing 5-3, you can see that the type is defined as blob and the
direction as out. This indicates this is for a Blob Storage output binding. The value of the
connection is the name of the application setting that contains the storage connection
value. The name represents the Blob in the function code.

Now you need make some changes in your run. csx file to add this output binding in
your timer-triggered function, as shown in Listing 5-4.

Listing 5-4. Modified run.csx

public static void Run(TimerInfo myTimer, ILogger log, TextWriter
outputBlob)
{
string message= $"C# Timer trigger function executed at:
{DateTime.Now}";
try{
outputBlob.Write(message);
log.LogInformation("Blob created successfully");
}
catch(Exception ex){
log.LogInformation("Blob creation failed");

}

In Listing 5-4, you add a parameter of the TextWriter type with the name defined in
the function. json file of the timer-triggered function. You can bind it to different types
such as string, Byte[], stream, and a few more. After that, you define a variable called

110

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

message that has a string value along with the date and time when the function execution
takes place. Next, you use the write method to write the value of the message variable
inside a new text file stored in your outcontainer, as shown in Figure 5-19.

== storageaccountchO05faf2e | Storage Explorer (preview) = - X
WER Storage account
|P Search (Ctrl+/) | « |] T- Upload = More
= Overview = 4 ﬂ BLOB CONTAINERS &~ = v 1‘ Active blobs (default) v o
ﬁ Activity log | m | azure-webjobs-hosts NAME
° [ezure-webjobs-secrets I () 094602ce-dbSt-4235-b78e-79d08776994].
&2 Diagnose and solve problems » (=] FILE SHARES
fa Access Control (I1AM) » Wl Queues

» BH TABLES
W Data migration

Z: Storage Explorer (preview)

Figure 5-19. View the newly created file in the outcontainer

You wrap the code snippet within a try-catch block to handle any errors. If
everything works well, you will see “Blob created successfully” in the log stream; if not,
the logged message will be “Blob creation failed.” Now this function will create a unique
text file with the value of the message variable every five minutes until the function is
stopped or disabled.

You can also log additional information as well as store the logs in persistent storage
to investigate any issues that result in failed function execution, but this is currently out
of the scope of this chapter. We will discuss the exception handling mechanism for your
function in Chapter 10.

To learn more about Blob Storage input and output bindings, we recommend you
look at https://docs.microsoft.com/en-us/azure/azure-functions/functions-
bindings-storage-blob.

111

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Create a Report Generator Using a Blob Storage
Binding and Timer Trigger

In the previous sections of this chapter, you learned to build Azure functions using a
timer trigger and Blob Storage output binding with an in-portal editor. In this section,
you will create a report generator using a Blob Storage output binding and a timer-
triggered Azure function in Visual Studio 2019. The primary objective of this report
generator will be to fetch data from the database and create a report file that contains
all the data from the data present at the time of execution in JSON format. You can
customize this further depending on the business requirements.

Let’s start building it using Visual Studio 2019. Open Visual Studio 2019 and click
“Create a new project,” as shown in Figure 5-20.

Get started

2 Clone a repository

Get code from an online repository like GitHub or
Azure DevOps

f)lj] Open a project or solution

Open a local Visual Studio project or .sin file

-, Open a local folder

Mavigate and edit code within any folder

f'#

Ly

Create a new project

Choose a project template with code scaffolding
to get started

Continue without code &

Figure 5-20. Create a new project

Now, you need to select the Azure Functions template for your project, as shown
in Figure 5-21. You won't be able to see the Azure Functions template if you haven’t
installed the Azure development workload. You can find the instructions to install the
Azure development workload using the Visual Studio installer in Chapter 2.

112

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Search for templates (Alt+5) P~

All languages - All platforms - All project types -

TRIB A project for creating a class library that targets NET Standard.

e Android i0s Linux macos Windows Library
ni"s Class Library (.MET Standard)
% ! A project for creating a class library that targets NET Standard.

Visual Basic Android ios Liru macOs Windows Library

< > Azure Functions
A template to create an Azure Function project.

Ce Azure Cloud

gRPC gRPC Service
A project template for creating a gRPC ASPUNET Core service using .NET Core.

= Liruo mac0s Windows Cloud Semvice Web

oR® Razor Class Library
A project template for creating a Razor class library.

Ca Llinw macOS Windows Llibrary Web

Figure 5-21. Select the Azure Functions template

Provide a name for the project and select the source location for the project, as
shown in Figure 5-22.

Configure your new project

Azure Functions ¢= Azuwre Cloud

Project name

Location

I C\Users\ashirwad\source\repos - I

Solution neme

I FunctionApp.ReportGeneratar I

:‘ Place solution and preject in the same directory

Figure 5-22. Provide a project name and click Create

113

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Select “Timer trigger,” provide a cron expression in the schedule, and finally select
the storage account as the storage emulator. The cron expression defined in this step will
be the schedule expression for your timer-triggered Azure function. We have selected the
storage account as a storage emulator because we want to work in the local environment,

but you can always modify the storage account connection. See Figure 5-23.

Create a new Azure Functions application

Azure Functions v3 NET Core) -

RabbitMQ trigger Storage account (AzureWeblobsStorage)

A C# function that will be run whenever a message is added to a specified RabbithMC queue
ISlorcge emulator - I
Ssnccrd & Some capabilities may require an Azure storage account.
A function that sends a confirmation e-mail when a new item is added to a particular queuve. Schedule
Q5"
Service Bus Queue trigger

A C# function that will be run whenever a message is added to a specified Service Bus queue

Service Bus Topic trigger

A C# function that will be run whenever a message is added to the specified Service Bus topic

SignalR

The following example shows a C# function that acquires SignalR connection information using
the input binding and retumns it over HTTP.

Timer trigger

A C# function that will be run on a specified schedule

Updates are ready Refresh

Figure 5-23. Select “Timer trigger,” configure the storage account, and schedule the
expression

Once you click Create, Visual Studio will generate a few files with some boilerplate
code with a timer-triggered function named Function1, as shown in Figure 5-24. We
discussed each of these files briefly in Chapter 2.

114

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

f3] Solution 'FunctionApp.ReportGenerator' (1 of 1 project)
4 FunctionApp.ReportGenerator
& Connected Services
b " Dependencies
P § Properties
J .gitignore
b * Functionl.cs
&T host.json
&T local.settings.json

Figure 5-24. Files generated by Visual Studio for your function

By default, the function will have code similar to Listing 5-5. The functionality of
this function is to run every five minutes and log a message with the date and time of

execution.

Listing 5-5. Boilerplate Timer-Triggered Code Generated by Visual Studio

public static class Function1

{
[FunctionName("Function1")]
public static void Run([TimerTrigger("o */5 * * * *")]TimerInfo
myTimer, ILogger log)
{
log.LogInformation($"C# Timer trigger function executed at:
{DateTime.Now}");
}
}

You are using an attribute-based declaration of triggers and bindings in this function.
While using the in-portal editor, you define it in the function. json file; otherwise, you
have to use the Integration pane to define or modify the triggers and bindings of your
functions. Here, the TimerTrigger attribute’s constructor takes a cron expression.

To enable your function to access a SQL Server database, you need to install the
System.Data.SqlClient NuGet package in your function project. You can do this using
the NuGet package manager in Visual Studio as well as by typing the following command
in the Package Manager Console:

115

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS
Install-Package System.Data.SqlClient -Version 4.8.2

Now you will create a POCO class representing the table. For the purpose of this
example, you are going to access a table consisting of the details of all the authors of a
publishing house. Refer to Listing 5-6 for the POCO class representing the authors table.

Listing 5-6. POCO Class Representing Authors Table

public class Author

{
public string author id { get; set; }
public string first name { get; set; }
public string last name { get; set; }
public string phone { get; set; }

}

Once you have created the Author class, you will use ADO.NET code to get the
data from the database and store it in a list of authors, as shown in Listing 5-7. You can
also use Entity Framework Core or any other ORMs like Dapper to interact with the
database. But before you jump into the code to get the data from the authors table, you
need to know where to store the connection string of your database. You can keep the
connection string inside the local.settings.json file as a key-value pair and later fetch
it in your function; or, you can hard-code the connection string in the function code itself
while creating the connection object. The latter is not the recommended way to do it.
You will learn how to manage secrets in function apps in Chapter 10.

Listing 5-7. Store the Connection String Inside local.settings.json

{
"IsEncrypted": false,
"Values": {
"AzurelebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER RUNTIME": "dotnet",
"DBCon": "your-connectionString"
}
}

116

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

In Listing 5-7, you created a key-value pair of DBCon inside the values of your local.
settings.json file. The value of DBCon is to be replaced by the connection string of your
database. Once you have added the connection string value in the local.settings.json file,
you can now fetch it using the GetEnvironmentVariable method, as shown in Listing 5-8.

Listing 5-8. Get the Data from the Authors Table and Store It in a List of Authors

List<Author> authors = new List<Author>();
string connectionString = Environment.GetEnvironmentVariable("BookStoresDB");
using (SqlConnection myConnection = new SqlConnection(connectionString))

{

string oString = "Select * from author";
SqlCommand oCmd = new SqlCommand(oString, myConnection);
myConnection.Open();
using (SqlDataReader oReader = oCmd.ExecuteReader())
{
while (oReader.Read())
{
Author author = new Author();
author.author id = oReader["author id"].ToString();
author.first name = oReader["first name"].ToString();
author.last name = oReader["last name"].ToString();
author.phone = oReader["phone"].ToString();
authors.Add(author);
}

myConnection.Close();

In the code snippet in Listing 5-8, you create a list of authors called authors.
Then you fetch the connection string from local.setting.json and store it in the
connectionString variable using the GetEnvironment method class. Then you use a
short piece of ADO.NET code to get the value of all the authors present in the table and
then store all the records fetched from the authors table in your Authozrs list. You need to
add the code snippet to the Run method of your function.

117

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Now that we covered the code to fetch and store data from the authors table in the
database to a list of authors, let’s convert the authors list into a JSON string by using the
Serialize method of the JsonSerializer class, as shown in Listing 5-9. Once you add
the code snippet shown in Listing 5-9 to serialize the authors list object into a JSON
string, pass this JSON string inside the LogInformation method and run your function to
check whether you are able to get the data and serialize the list object into a JSON string.

Listing 5-9. Display the Serialized Authors List As a JSON String in the Azure
Functions Core Tools Logs Window

var jsonData = JsonSerializer.Serialize<List<Author>>(authors);
log.LogInformation($"{jsonData}");

You should see the JSON string in the logs of your Azure Functions Runtime Tools
window, as shown in Figure 5-25. This is an optional step. You can use the code snippet
in Listing 5-9 to check whether your function is working as expected. (The log message
will be different depending on the data you have in your tables.)

[2021-03-02T718:56:00.5482] [

[2021-03-02T18:56 6427] | i ; 378 4 2
[2021-03-02T18:56:085.612Z] t lock lease qu 1 . g g £R0EP2eP0E08RRTo8e"

Figure 5-25. Serialized JSON string displayed as a log message

Now that you have checked that your function is working as expected, let’s install the
NuGet package required for Blob Storage bindings. You can install the required package
by typing the following command in the package manager console of Visual Studio:

118

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS
Install-Package Microsoft.Azure.WebJobs.Extensions.Storage

Once you have installed the NuGet package, you will have to modify the parameters
of your run method. You need to add a blob attribute and a TextWriter type parameter
called outblob. You will be passing the Blob path and file access rights and will define
the connection property by assigning the connection string of your storage account to
the attributes constructor.

You will be passing the Blob path as report/{rand-guid}.json, file access as
FileAccess.Write, and the storage account connection as AzureWebJobsStorage. When
you define the storage connection as AzurelWlebJobsStorage, your function looks at
the value of AzurelWebJobsStorage key present in your local.settings. json file. You
need to make sure that the value is defined as UseDevelopmentStorage=true for the
AzureWebJobsStorage key.

After you have configured the attribute of the run method of your function by adding
the blob attribute and have added the TextWriter Type parameter as outBlob, which is
the variable that represents the Blob in the function code, you will use outBlob to write
the jsonData in a JSON file whose name will be a random GUID that will be generated
with the help of the {rand-guid} binding expression. You will store this file inside the
report container. You can see the final function code in Listing 5-10.

Listing 5-10. Code for the Schedule-Based Report Generator

using System;

using System.Collections.Generic;

using System.Data.SqlClient;

using System.Text.Json;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.logging;

using Microsoft.Azure.WebJobs.Extensions.Storage;
using System.IO;

using System.Text;

namespace FunctionApp.ReportGenerator

{

public static class Functioni

119

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

{

[FunctionName("Functioni")]
public static void Run([TimerTrigger("o */5 * * * *")] TimerInfo
myTimer, IlLogger log,
[Blob("report/{rand-guid}.json", FileAccess.Write, Connection
="AzurelWebJobsStorage")] TextWriter outBlob)

log.LogInformation($"C# Timer trigger function executed at:
{DateTime.Now}");
List<Author> authors = new List<Author>();
string connectionString = Environment.GetEnvironmentVariable
("BookStoresDB");
using (SqlConnection myConnection = new SqlConnection
(connectionString))
{

string oString = "Select * from author";

SqlCommand oCmd = new SqlCommand(oString, myConnection);

myConnection.Open();
using (SqlDataReader oReader = oCmd.ExecuteReader())
{
while (oReader.Read())
{
Author author = new Author();
author.author _id =oReader["author id"].ToString();
author.first name = oReader["first name"].ToString();
author.last name = oReader["last name"].ToString();
author.phone = oReader["phone"].ToString();
authors.Add(author);
}

myConnection.Close();

}

var jsonData = JsonSerializer.Serialize<List<Author>>(authors);
log.LogInformation($"{jsonData}");
outBlob.Write(jsonData);

120

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

}

Listing 5-10 consists of the function code that runs every five minutes and generates
a report consisting of all the author records stored in the JSON format. Since you have
written the code for your timer-triggered report generator function, let’s test it by
running the Azure Functions Runtime Tool. If your function executed successfully, then
you should see a Blob container named Report and a JSON file with its name being a
random GUID in your local storage account. You can view this in Visual Studio with the
help of the Cloud Explorer. Alternatively, you can use the Storage Explorer to view the
Blob containers.

You can open the Cloud Explorer by clicking the view in Visual Studio and then
clicking Cloud Explorer. You will be able to see the Cloud Explorer in the Visual Studio
screen, as shown in Figure 5-26.

Cloud Explorer v aXx
Resource Types « | 2
x [0
Collapse All Refresh All
1% Recently Used
4 9 (Local)
» [#) Data Lake Analytics
4 LE Storage Accounts |
4 B Emulator - Default Ports |

]4 & Blob Containers |

B azure-webjobs-hosts
& dev
Bl test

» [Queues

b EH Tables

» 49 Azure Pass - Sponsorship (G

Figure 5-26. Cloud Explorer view

121

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

The Cloud Explorer allows you to manage your Azure resources and manage the
storage accounts present in your local storage emulator. You need to install the Azure
workload in Visual Studio to use the Cloud Explorer, provided you are using Visual
Studio 2017 or newer.

You can see from Figure 5-26 that you have a Blob container named report in your
local storage account. As mentioned earlier, if you do not have a Blob container named
report in your Blob containers, your function will create a Blob container named report
first and then create a file with a random GUID along with the serialized data from the
authors table. You can click the report Blob container to view the file created by your
function. You should see a screen similar to the one shown in Figure 5-27 after you click
the report container.

File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Searc.. 2 Fians Book i o %
Help

Q - = T - ~ Debug ~ AnyCPU = P FunctionAppBock ~ & = | LiveShare 5T
report [Container] & BlobAttribute [from metadata] & test [Container] Author.cs TimerAndBlob.cs -]
Filter by prefix (case-sensitive) P DA XCOR
1
Name = Size Last Modified (UTC) Content Type URL

Y9 2c976168-¢175-42b7-b95c-682¢bTefbBcjson 1.9KB 3/2/2021 T:40:25PM application/octet-stream http://127.0.0.1:10000/ devstoreaccount]/report/2c976...

sojdxg pnojy xoqoo] sauo|dx] AR

Micresoft Azure Activity Log

@" Storage | | [} Virtual Machines | |Q, E i 2 Re all completed

Description Status Start Time

(&) Download blob '2c376168-175-42b7-b95c-682cb76f 1 bbc.json’ Completed 3/3/2021 1:40:35 AM

suonesynopy Jsaiojdxa wea) Jasojdxg uonnjos aueys aan sjooy ansoubeig

Web Publish Activity ErrorList Qutput Package Manager Conscle Microsoft Azure Activity Log

Figure 5-27. Cloud Explorer view of the files generated by your function

You can double-click the file or right-click the filename and click Save to download
the file.

122

CHAPTER 5 BUILD A REPORT GENERATOR WITH A TIMER TRIGGER AND BLOB STORAGE BINDINGS

Summary

In this chapter, you learned how to work with timer triggers and Blob Storage output
bindings using Visual Studio and the in-portal editor of the Azure portal. You then used
these concepts to build a report generator that gets triggered every five minutes, fetches
data from a database table, and creates a JSON file by serializing the fetched data from
the database table using a Blob Storage output binding.

The following are the key takeaways from this chapter:

e You can trigger an Azure function using a timer trigger. The function
gets triggered depending on the configured schedule.

¢ You can create a file inside a Blob container from Azure Functions
using a Blob Storage output binding.

e You can declaratively configure a timer trigger and Blob Storage
output binding without having to write much code.

e Visual Studio provides a template to work with timer triggers.

e You can work with a storage emulator to build and test functions
locally that use Blob Storage bindings.

123

CHAPTER 6

To-Do API with an HTTP
Trigger and a Table
Storage Binding

At some point you may need to invoke an Azure function using HTTP calls. This will
come in handy when you invoke an Azure function from your application code and

pass the data to the function to process. The application code can use HTTP triggers to
invoke Azure functions and pass the data to the function as the trigger payload. You may
also encounter scenarios where the function will process the business logic and save

the processed data in Table Storage. You can use a Table Storage binding to achieve this
functionality.

In the previous chapter, you learned all about the essential concepts of timer triggers
and Blob Storage bindings. You built a report generator application using a timer trigger
and Blob Storage binding. In this chapter, you will explore how to implement an HTTP
trigger and Table Storage binding for the Azure Functions service and build a to-do API
that will populate your to-do list for the day.

Structure of the Chapter

In this chapter, you will explore the following aspects of HTTP triggers and Table Storage
bindings:

e Getting started with HTTP triggers and use cases
e Building a sample application using an HTTP trigger

e Routing HTTP-triggered Azure functions

125
© Ashirwad Satapathi and Abhishek Mishra 2021

A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_6

https://doi.org/10.1007/978-1-4842-7122-3_6#DOI

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

o Getting started with Table Storage bindings and use cases
o Building a sample application using a Table Storage binding

o Creating a to-do API with HTTP triggers and Table Storage bindings

Objectives

After studying this chapter, you will be able to do the following:
o Implement HTTP triggers for Azure Functions

e Implement Table Storage bindings for Azure Functions

Getting Started with HTTP Triggers and Use Cases

An HTTP trigger helps you execute an Azure function using HTTP verbs or methods.
You can add your business logic or data access logic to the Azure function and enable an
HTTP trigger for the Azure function. Then from your application code or user interface,
you can invoke the Azure function using an HTTP trigger. As a best practice, you need to
break the business logic or the data access logic into short-running code pieces so that
your Azure function does not time out and you adhere to the serverless principles. HTTP
triggers help you build serverless APIs and let you expose the Azure function as a web
hook. You can pass data to the Azure function as the trigger payload using a query string
or POST parameter value.

The following are a few example scenarios where you can use HTTP triggers:

e You can host common utility logic in an Azure function that can be
used across all the application modules. The Azure function can have
an HTTP trigger enabled and can be called using an HTTP GET or
POST method.

¢ You can host code on the Azure function that performs a business
functionality such as report generation or data update or any other
such activity on demand. You can invoke the Azure function using an
HTTP trigger whenever needed.

126

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

e You can build a data access layer to fetch data from the underlying
database and give it to you. Your application can invoke the Azure
function using HTTP calls to perform CRUD operations on the
database.

Build a Sample Application Using an HTTP Trigger

Now let’s build an Azure function using Visual Studio and enable an HTTP trigger for the
Azure function. Open Visual Studio and click “Create a new project.” See Figure 6-1.

¥
= Clone or check out code

Get code from an online repository like GitHub
or Azure DevOps

("@ Open a project or solution

Open a local Visual Studio project or .sln file

- Open a local folder

Navigate and edit code within any folder

"'@ Create a new project

Choose a project template with code scaffolding
to get started

Continue without code =

Figure 6-1. Create a new project

Select the Azure Functions template. Click Next. See Figure 6-2.

127

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

c# - All platforms

@ ASP.NET Core Web Application
2

(<] Linux macOs Windows Cloud

web apps with rich dynamic user interfaces (Uls).

ci Linux macQs Windows Cloud

Project templates for creating ASP.NET Core web apps and web APls for Windows,
Linux and macOS using .NET Core or .NET Framework. Create web apps with Razor
Pages, MVC, or Single Page Apps (SPA) using Angular, React, or React + Redux

@ Blazor App
Project templates for creating Blazer apps that that run an the server in an ASP.NET
Core app or in the browser on WebAssembly. These templates can be used to build

< Azure Functions

A template to create an Azure Function project.

c# Azure Cloud

gRPC gRPC Service

—p= Worker Service

A project template for creating a gRPC ASP.NET Core service using .NET Core.

c# Linux macO5 Windows Cloud

= Cloud =

Service Web

Web

Service Web

Back Next

Figure 6-2. Select the Azure Functions template

Provide a name for the project and click Create. See Figure 6-3.

Configure your new project

Azure Functions ¢ Awe Clowd

Project name

HTTPTriggeredFunction

Location
CUsers\Abhishek Mishra\source\repos
Solution name
HTTPTriggeredFunction

[] Place sotution and project in the same directory

=

Figure 6-3. Provide the project details

128

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Select the “Http trigger” template and set the authentication method to Anonymous.
This action will help you invoke the function without using any access keys. However,
you should choose the Anonymous authentication type only in development and testing
scenarios. In other environments such as staging and production, you should use
Function as the access level. See Figure 6-4.

Create a new Azure Functions Application

Azure Functions v3 (NFT Cere) i

m Cosmos UB Irgger

o Storage Account (AzureWeblobsStorage)

A C# function that will be run whenever documents change in a decument collection.
Storage Emulator

Event Grid trigger

L Some capabilities may require an Azure storage account

A C# function that will be run whenever an event grid receives a new event iration 1
E Event Hub trigger I Anonymous -

A C# function that will be run whenever an event hub receives a new event

Http trigger

A C# function that will be run whenever it receives an HTTP request

loT Hub trigger

A C# function that will be run whenever an iot hub receives a new event on the event hub
endpaint.

Queue trigger

A C# function that will be run whenever a message is added to a specified Azure Queue Storage

:.! hlaking sure all templates are up to date...

s

Figure 6-4. Select an HTTP trigger template

The Visual Studio solution with an HTTP-triggered Azure function gets created.
Listing 6-1 shows the code for Functioni.cs. The code gets the name parameter value
passed either in the HTTP request query string or in the body, appends it to a Hello
message, and returns the message to the caller.

Listing 6-1. Functionl.cs Code

using System;
using System.IO;
using System.Threading.Tasks;

129

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

public static class Functioni
{
[FunctionName("Functioni")]
public static async Task<IActionResult> Run(
[HttpTrigger (AuthorizationLevel.Anonymous, "get", "post", Route =
null)] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function processed a
request.");

string name = req.Query["name"];

string requestBody = await new
StreamReader (req.Body) .ReadToEndAsync();

dynamic data = JsonConvert.DeserializeObject(requestBody);
name = name ?? data?.name;

string responseMessage = string.IsNullOrEmpty(name)

? "This HTTP triggered function executed successfully.
Pass a name in the query string or in the request body
for a personalized response."

: $"Hello, {name}. This HTTP triggered function executed

successfully.";

return new OkObjectResult(responseMessage);

130

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Now run the solution. Wait until the console displays the function URL in the
execution console. See Figure 6-5.

B C:\Users\Abhishek Mishra\AppData\Local\AzureFunctionsTools\Releases\3.22.0\cli_x64\func.exe

fizure Functions Core Tools
Core Tools Version: 3.0.3354 Commit hash: ad@e717beepe3d7648aa80d19980e837a677b13c
Function Runtime Version: 3.0.15371.0

[2821-83-86T06:58:18,2897] Fou C:\Users\Abhishek Mishra\source\repos\HTTPTriggeredFun

Functions:
Functionl: [GET,POS http://localhost:7071/ap

For detailed output, run func verl

(2021-03-06T06:58:47,939Z] Host lock Il

Figure 6-5. Function execution

Copy the URL from the console window. Append the URL with the query string
?name=Abhishek and then browse to the URL. See Figure 6-6.

&« C ® localhost:7071/api/Function1?name=Abhishek

Hello, Abhishek. This HTTP triggered function executed successfully.

Figure 6-6. Browse to the function URL along with the query string

131

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Routing in HTTP-Triggered Azure Functions

You can define a route for an Azure function with ease. By default, whenever you create
an Azure function, the following route gets created for the Azure function, and you can
navigate to the function using that route:

http://{FunctionAppName}.azurewebsites.net/api/{FunctionNames}

Here, {FunctionAppName} is the name of the Azure Functions app service, and
{FunctionName} is the name of the function.

However, in some situations, you may have to customize the default route. You may
have to replace api and {FunctionName} in the function route with more meaningful
values. For example, you may need to define the route based on the business processing
it does, as follows:

http://<FunctionAppName>.azurewebsites.net/Maths/Add/{param1}/{param2}
http://<FunctionAppName>.azurewebsites.net/Maths/Subtract/{param1}/{param2}
http://<FunctionAppName>.azurewebsites.net/StringOps/Concat/{param1}/{param2}
http://<FunctionAppName>.azurewebsites.net/StringOps/Replace/{param1}/{param2}

Here, {param1} and {param2} are input parameters for the Azure function.

Let’s modify the Azure function solution you developed earlier to enable a custom
route. Open the Azure function solution that you built earlier using Visual Studio. Let’s
first modify the api value in the URL. Open the host. json file. Add the extensions
section and provide the value of the routePrefix parameter as Maths, as shown in
Listing 6-2.

Listing 6-2. Host.json with a Custom Route Prefix

{
"version": "2.0",
"logging": {

"applicationInsights": {
"samplingExcludedTypes": "Request",
"samplingSettings": {

"isEnabled": true

132

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

}
}
})
"extensions": {
"http": {
"routePrefix": "Maths"
}
}

Now let’s modify the Functioni.cs code to add a custom route for the Azure
function (see Listing 6-3). Add the route value as Maths/{param1}/{param2} in the Route
parameter of the HttpTrigger attribute and add two input parameters, paraml and
param2, matching the route parameters defined.

Listing 6-3. Functionl.cs with a Custom Route

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

public static class Functioni
{
[FunctionName("Functioni")]
public static async Task<IActionResult> Run(
[HttpTrigger (AuthorizationLevel.Anonymous, "get", "post",
Route = "Add/{parami}/{param2}")] HttpRequest req,
int parami, int paramz,
ILogger log)

133

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

{
log.LogInformation("C# HTTP trigger function processed a
request.");
string responseMessage = "The computed addtition value
is"+(paraml + param2).ToString();
return new OkObjectResult(responseMessage);

}

Now let’s execute the Azure function in Visual Studio. You can see the Azure function
with a custom route. See Figure 6-7.

B C:\Users\Abhishek Mishra\AppData\Local\AzureFunctionsTools\Releases\3.22.0\cli_x64\func.exe

Azure Functions Core Tools
Core Tools Version: 3.0.3354 Commit hash: ade®717b0eee3d7648aa88d19980e837a677bl3c
Function Runtime Version: 3.8.15371.0

[2021-83-86T17:55:37.317Z] Found C:\Users\Abhishek Mishra\source\repos\HTTPTriggeredFunct
~iggeredFunction.csproj. Using for user secrets ile configuration

Functions:
Functionl: [GET,P0OST]{http://localhost:7@71/Maths/Add/{paraml}/{param2

For detailed output, run func with --verbose flag.
[2021-03-06T17:55:46.4587] Host lock lease acquired by instance ID '©00000000000000000000

Figure 6-7. Function execution

Now let’s browse to the Azure function using the following URL (see Figure 6-8):

http://localhost:7071/Maths/Add/22/23

134

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

< C @® localhost:7071/Maths/Add/22/23

The computed addtition value is 45

Figure 6-8. Browse to the function URL

Getting Started with Table Storage Bindings and
Use Cases

Sometimes the Azure function will process the business logic and save the output data
in Azure Table Storage. You may also have scenarios where the Azure function will read
the data from Table Storage and process it. You can use a Table Storage input binding or
Table Storage output binding and achieve this functionality with ease. You need to add a
declarative configuration to add a Table Storage binding to the Azure function, and you
can interact with the Azure Table Storage data using a few lines of code.

The following are few of the use cases where you can use an Azure Table Storage
binding:

o For the applications storing data in Azure Table Storage, you can
write CRUD operations using Azure functions and access the data
using Table Storage input or output bindings.

e You can build a to-do list application to use an Azure function to
store your daily task list in Azure Table Storage. You need to enable an
Azure Table Storage binding for the Azure function.

e You may choose to persist your application logs or audit data in Table
Storage. You can use an Azure function to store the errors, exceptions,
logs, and audit details in Azure Table Storage. You need to enable an
Azure Table Storage binding for the Azure function.

135

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Build a Sample Application Using a Table Storage
Binding
Now let’s build a sample application using a Table Storage binding. As a prerequisite,

let’s create a storage account and then create a storage table in the storage account.
Go to the Azure portal and click “Create a resource.” See Figure 6-9.

Azure services

|l @ o

Create a Resource Azure Active
resource groups Directory

Figure 6-9. Create a resource

Search for storage account and click the search result “Storage account.” See Figure 6-10.

New

| © storage account |

Storage account

e

Get started Windows Server 2016 Datacenter
Quickstarts + tutorials

Recently created

Al + Machine Learning Ubuntu Server 18.04 LTS
@ Learn more

Analytics

Figure 6-10. Select “Storage account”

Click Create. See Figure 6-11.

136

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Storage account =

Microsoft

Storage account

Microsoft
% % % % r 4.2 (1731 ratings)

Figure 6-11. Click Create

Select your Azure subscription, your resource group, and the location where you
need to create the storage account. Provide a name for the storage account. Click
“Review + create.” See Figure 6-12.

Create storage account

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like
your resources.

Subscription * _

Resource group * Il rg-book I
Create new

Instance details

The default deployment model is Resource Manager, which supports the latest Azure feat
using the classic deployment model instead. Choose classic deployment model

Storage account name * (© Il demofortablestorage I
Location * | (US) East Us
Performance @ @ Standard O Premium

< Previous [Next : Networking >

Figure 6-12. Click “Review + create”

137

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Click Create. This action will create the storage account. See Figure 6-13.

Create storage account
@ validation passed

Basics Networking Data protection Advanced Ta

Basics

Subscription]
Resource group rg-book

Location East US

Storage account name demofortablestorage
Deployment model Resource manager
Account kind StorageV/2 (general purg
Replication Read-access geo-redung
Performance Standard

< Previous I Next >

Figure 6-13. Click Create

Once the storage account gets created, copy the connection string for the storage
account. Go to “Access keys” and click “Show keys.” The connection string will be
displayed. See Figure 6-14.

138

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

demofortablestorage | Access keys

Storage account

[/O Search (Ctrl+/)] « Use access keys to authent]
Azure Key Vault - and don’
connections using one key

(74 LAGYIIUIT alid SUVING IURITHNS
.

9}3\ Access Control (IAM)
- o When you regenerate your|
@ Data migration action will not interrupt acq

Events
Storage account name

=z Storage Explorer (preview) ‘ demofortablestorage

Settings Show keys
keyt (0

Figure 6-14. Copy the connection string

Now let’s go back to the Azure function solution that you created earlier and open
local.settings.json (see Listing 6-4). Add a key for the connection string named
ConnectToTable and provide the Azure storage account connection string that you
copied from the Azure portal earlier.

Listing 6-4. local.settings.json

{
"IsEncrypted": false,

"Values": {
"AzurellebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER RUNTIME": "dotnet",
"ConnectToTable": "[Replace with connection string copied from Azure
Portal]"

Now let’s add the NuGet package Microsoft.Azure.WebJobs.Extensions.Storage
for the project. This action will help the Azure function interact with the Azure storage.
Open Functioni.cs and replace the contents with Listing 6-5. The properties in the
MathResult class refer to the columns in Azure Table Storage. Specify the return:

139

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Table attribute and provide the name of the connection string you specified in the
local.settings.json file. ResultTable mentioned in the attribute is the name of the
table that will be created in Azure Table Storage.

Listing 6-5. Functionl.cs

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{
public static class Functioni
{
[FunctionName("Function1")]
[return: Table("ResultTable", Connection = "ConnectToTable")]
public static MathResult Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",
Route = "Add/{parami}/{param2}")] HttpRequest req,
int parami, int param2,
ILogger log)
{
log.LogInformation("C# HTTP trigger function processed a
request.");
int result = parami + param2;
return new MathResult { PartitionKey = "Math",
RowKey = Guid.NewGuid().ToString(),
Operation="Add", Result = result };
}
}

140

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

public class MathResult

{
public string PartitionKey { get; set; }
public string RowKey { get; set; }
public string Operation { get; set; }
public int Result { get; set; }

}

Execute the Azure function and browse to the following function URL:
http://localhost:7071/Maths/Add/2/3

Go to the Storage Explorer for the storage account in the Azure portal, and you can
find the table with fields as in the MathResult class. See Figure 6-15.

@ Query —+ Add _,/: Edit ©@- Selectall [Column Options - More
¢+ 71 BLOB COMTAINERS PARTITIONKEY =~ ROWKEY TIMESTAMP OPERATION RESULT|
b I8l FILESHARES Math fa405fd6-18b8-447b-8aec-b3bbchfb5157 2021-03-11T08:03:17.54257687 Add 5

» Wl QUEUES

4 [TABLES
& demotable
T MyTable

l = ResultTable I

Figure 6-15. ResultTable in Azure Storage Explorer

Create a To-Do API with an HTTP Trigger and a Table
Storage Binding

Now let’s build a to-do API. Modify the Functioni.cs file as shown in Listing 6-6. In
the function’s Route parameter, you send the date, time, and to-do activity to the Azure
function. The properties in the ToDo class refer to the columns in Azure Table Storage.
Specify the return: Table attribute and provide the name of the connection string you
have specified in the local.settings.json file. ToDoList mentioned in the attribute is
the name of the table that will get created in Azure Table Storage.

141

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Listing 6-6. Functionl.cs

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{
public static class Functionl
{
[FunctionName("Functioni")]
[return: Table("ToDolList", Connection = "ConnectToTable")]
public static ToDo Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",
Route = "ToDo/{date}/{time}/{activity}")] HttpRequest req,
string date, string time, string activity,
ILogger log)
{
log.LogInformation("C# HTTP trigger function processed a
request.");
return new ToDo { PartitionKey = date,
RowKey = Guid.NewGuid().ToString(),
Time=time,
Activity=activity };
}
}
public class ToDo
{

public string PartitionKey { get; set; }
public string RowKey { get; set; }

142

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

public string Time { get; set; }
public string Activity { get; set; }

Execute the Azure function and browse to the following function URL:

http://localhost:7071/Maths/ToDo/10-Feb-2021/4 20PM/Get vegetables from
market

Go to the Storage Explorer for the storage account in the Azure portal, and you can
find the table ToDoList with fields as in the ToDo class.

Now let’s create another Azure function that you can use to read from the to-do
list in Azure Table Storage. Right-click the Azure function project and add a new Azure
function named Function2.cs. Make sure you use the HTTP trigger template for the
function. See Figure 6-16.

_ Solution Explorer
@E-o-sa@ ,-=

Search Solution Explorer (Ctrl+;)

3] solution "HTTPTriggeredFunction’ (1 of 1 project)
4 HTTPTriggeredFunction

& ;

b 2 Dependencies ksl Build
gitignore Rebuild

P €* Functionl.cs Clean

{J hostjson

Analyze and Code Cleanup ’
&T local.settings json

Pack
@ Publish...

Scope to This
MNew Solution Explorer View

& Edit Project File

I New Azure Function_..l Add »
0 New ltem... Ctrl+Shift+A #f Manage NuGet Packages...
*1 Fvictinn Item Shift+Alts A Manage User Secrets

Figure 6-16. Add a new function

Add the ToDoRead class to the Azure function (see Listing 6-7). It should inherit from
the TableEntity class. You are using CloudTable to get the results from Table Storage,
and you are using TableQuery to query the records in Table Storage. You need to get the
records for the date and time passed as a query string by the user.

143

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Listing 6-7. ToDoRead Class

using System;

using System.IO;

using System.Ling;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.Cosmos.Table;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Logging;
using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

public static class Function2

{

[FunctionName("Function2")]
public async static void Run(

144

[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",
Route = "ToDo/{date}/{time}")] HttpRequest req,
[Table("ToDoList", Connection = "ConnectToTable")] CloudTable
cloudTable, string date, string time, ILogger log)

log.LogInformation("C# HTTP trigger function processed a
request.");

//Create query to get items from the Table Storage selectively only
//for the date and time that user passes in the route parameter.

TableQuery<ToDoRead> rangeQuery = new TableQuery<ToDoRead>().Where(
TableQuery.CombineFilters(
TableQuery.GenerateFilterCondition("PartitionKey",
QueryComparisons.Equal, date),
TableOperators.And,
TableQuery.GenerateFilterCondition("Time",

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

QueryComparisons.Equal, time)));
foreach (ToDoRead entity in
await cloudTable.ExecuteQuerySegmentedAsync(rangeQuery, null))

log.LogInformation(
"Your TO DO : "+entity.Activity);

}
public class ToDoRead:TableEntity

{
public string Time { get; set; }
public string Activity { get; set; }

Run the Azure function project and browse to the following URL. Pass the date and time.
The function will fetch the activity that you added for that date and time. See Figure 6-17.

http://localhost:7071/Maths/ToDo/10-Feb-2021/4 20PM

B8 C\Users\Abhishek Mishra\AppData\Locally unctionsTools\Rel .28 cli_xbdhfunc.exe - o]

[2021-06-17T19:39:23.015Z] Function 'Function2' is async but does not return a Task. Your fu
nction may not run correctly.

Functions:
Functionl: [GET,

Function2: [GET,POS tp://localhost:7671/Mat

ailed output, run func with
[2021-86-17T19:39:28.2027Z] Host lock
[9118AF17".
[2021-06-17T19:40:66.809Z] Exec
called via the host APIs.',
[2021-06-17T19:40:09,113Z]
[2021-06-17T19:40:09.1467] Ex

flag.

acquired by instance ID '©2080€000080200000000008

'Function2' (Re function was programmatically
daf3-4@74-8
* function pr

iction2' (Succeed

4243)

quest.
, 1d=0761e23b-daf3-4874-8F3b-8b4fe

1684243, Duration=3515ms)
[2021-96-17T19:48:43,286Z] Exe unction was programmatically|
called via the host APIs.',

[2021-AR-17T19:40:44 98371 (|
[2621-86-17T19:40:44,5887] Ex
1635227, Durat ims)
[2021-86-17T19:40:45,2187]

517 - 206 - 4060 - 9653 - d4ass

Figure 6-17. Triggered function result

145

CHAPTER 6 TO-DO API WITH AN HTTP TRIGGER AND A TABLE STORAGE BINDING

Note To keep the illustration simple, the date and time fields are handled as
strings in Table Storage. In the actual production scenario, these fields should be
corresponding date and time types.

Summary

In this chapter, you learned how to work with HTTP triggers and Storage Table input and
output bindings using Visual Studio. You then used these concepts to build a to-do API
that you can trigger with an HTTP GET request. You can pass the date, time, and activity
you are planning to do during that time. The to-do API will add the activity to the to-do
list and fetch the to-do list activity.

The following are the key takeaways from this chapter.

e You can trigger an Azure function using an HTTP trigger. The
function gets invoked using HTTP verbs like GET, POST, PUT, and
others.

e You can add records to Table Storage using a Table Storage output

binding.

e You can read records from Table Storage using a Table Storage input
binding.

e You can declaratively configure an HTTP trigger and Table Storage
binding without having to write much code.

e Visual Studio provides a template to work with an HTTP trigger.

146

CHAPTER 7

Creating Custom Bindings
for Azure Functions

Bindings help the Azure Functions service exchange data with other Azure services

and external services with ease. You need to add a declarative configuration to enable
bindings for functions. Azure provides a wide range of bindings out of the box. In

most scenarios, the bindings provided by Azure should be good enough to achieve the
intended application functionality such as reading from Blob Storage, putting some data
in Queue Storage, triggering a binding from RabbitMQ, and much more. However, there
will be scenarios or use cases where the standard bindings provided by Azure may not fit
into your business scenarios or you need to interact with a new service for which Azure
Functions does not have readily available binding support. For such scenarios, you can
build a custom binding based on your needs.

In the previous chapter, you learned how to implement a to-do API using HTTP
triggers and Table Storage bindings. In this chapter, you will explore the concept of
custom bindings and learn how to implement a custom binding for a .NET Core-based
Azure function.

Structure of the Chapter

In this chapter, you will explore the following aspects of Azure Functions custom
bindings:

e Introduction to custom bindings
e Use cases for custom bindings

e Building a custom binding for Azure Functions

147
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_7

https://doi.org/10.1007/978-1-4842-7122-3_7#DOI

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

Objectives

After studying this chapter, you will be able to do the following:
e Understand custom bindings for Azure Functions

o Create a custom binding for Azure Functions

Introduction to Custom Bindings

Bindings require less coding on your part and simplify your code. You need to add
declarative configurations in the Azure Functions code to interact with an external
service or an Azure service. Azure provides an array of input and output bindings out

of the box. However, there are scenarios where the standard function bindings may not
meet your business requirements. In these cases, you can build a custom input or output
binding to meet your business needs. Creating a custom binding is an easy and one-time
activity, and the binding can be reused across functions.

You can build a custom binding using .NET by following a couple of easy steps. You
can create custom input and output bindings using the Azure Functions SDK based on
the WebJobs extension libraries. You just focus on building the business functionality
for the custom binding, and most of the heavy lifting is done by the underlying .NET
libraries. Once the custom binding is ready, you can consume it in your functions just
like the standard bindings.

Use Cases for Custom Bindings

Before creating a custom binding, you should first determine whether an existing
binding suffices based on your requirements. Azure offers a wide range of function
bindings, and you should be able to manage most of the scenarios with those bindings.
You may need to build a custom binding for the following scenarios:

e The existing bindings do not meet the requirements, and you need
more functionality to be addressed. For example, you need to update
some entities in Azure Table Storage. This scenario is not supported
by any existing Azure Table Storage binding.

148

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

e Azure Functions does not have a binding for an Azure service. For
example, say you need to interact with Azure Cache for Redis and work
on cache data. There is currently no binding for Azure Cache for Redis.

e You need to connect with an external non-Azure service or
component and exchange data with it. For example, you need to pull
some data from Twitter. There is currently no binding available for
Azure Functions to interact with Twitter.

* Youneed to achieve a specific functionality with functions that
need to deal with multiple services and components at a time. For
example, you can build a binding to fetch data from multiple storages
and data sources like Azure Cosmos DB, Azure SQL, or Amazon S3
and then aggregate the data. Azure Functions can build a custom
report with this data.

Build a Custom Binding for Azure Functions

Let’s create a custom binding for an Azure function that will help in converting the data
from one format to another. A third-party service processes the users’ data and saves the
data in a centralized location accessible to both the third-party service and the Azure
function. The third-party service generates the data as listed in Listing 7-1.

Listing 7-1. Data Format Generated by the Third-Party Service
[name:Abhishek Mishra,Age:32,subject:maths]

The Azure function needs to further process the data generated by the third-party
service. However, the Azure function does not understand the current data format being
generated and can only work on the format in Listing 7-2.

Listing 7-2. Data Format That the Function Understands
{ "name":"Abhishek Mishra","Age":"32","subject":"maths" }

Before processing the data, you need to implement code that will format the data,
and that code will not be reusable; it is good only for the Azure function where it is
implemented. To handle this scenario, you can create a custom binding that will read

149

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

the data from the central location, do the necessary conversion, and then pass on the
converted data to the Azure function. You are saved from implementing code at the
function level and can use the binding in multiple functions if needed. See Figure 7-1.

Third-Party

Service

Third-party service
generates data file.

Data File

Custom binding
picks data file.
Custom binding provides

formatted data to o
Azure function. Custom Blndlng
Y __________J§ ThatDoesData

Formatting

Figure 7-1. Custom binding scenario
You can create a custom binding using the following steps. In this chapter, you will

use Visual Studio 2019 to build the custom binding.

1. Create an Azure function.

2. Implement the binding attribute class.

3. Implement the binding logic class.

4. Implement the binding extension class.

5. Implement the binding startup class.

6. Incorporate the binding in the Azure function.

Now let’s implement each of these steps.

150

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

Create an Azure Function

Open Visual Studio and click “Create a new project.” See Figure 7-2.

+
h S Clone or check out code

Get code from an online repository like GitHub
or Azure DevOps

"@ Open a project or solution

Open a local Visual Studio project or .sin file

-, Open a local folder

Navigate and edit code within any folder

"'@ Create a new project

Choose a project template with code scaffolding
to get started

Continue without code -

Figure 7-2. Create a function project

Select the Azure Functions template. Click Next. See Figure 7-3.

151

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

c# - All platforms -

@ ASP.NET Core Web Application
De)

@ Blazor App

web apps with rich dynamic user interfaces (Uls).

c# Linux macOs Windows Cloud Web

< > Azure Functions
A template to create an Azure Function project.

C# Azure Cloud

gRPC gRPC Service

—p= Worker Service

C# Linux macO5 Windows Cloud Service

Ci Linux macQs Windows Cloud Service

Cloud

Web

A project template for creating a gRPC ASP.NET Core service using .NET Core.

Web

Back

Project templates for creating ASP.NET Core web apps and web APIs for Windows,
Linux and macOS using .NET Core or .NET Framework. Create web apps with Razor
Pages, MVC, or Single Page Apps (SPA) using Angular, React, or React + Redux.

Project templates for creating Blazor apps that that run on the server in an ASP.NET
Core app or in the browser on WebAssembly. These templates can be used to build

Next

Figure 7-3. Select the Azure Functions template

Provide the project name and click Create. See Figure 7-4.

Configure your new project

Azure Functions ¢ anse chud
Project name

Lo<ation

CUsers\Abhishek Mishea\scurce\repos .
Salution name €
FuncBinding Dema

(] Pace schution and project in the same directary

Back

Create

Figure 7-4. Provide the function project details
152

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

Select “Http trigger” and click Create. See Figure 7-5.

Create a new Azure Functions Application

Azure Functions v3 (NET Core)

=] Cosmos DB Irigger

Storage Account (AzureWeb lobsStorage)
ACP function that will be run whenever documents change in a document collection.

Storage Emulator
Event Grid trigger

4. Some capabilibies may require an Azure storage account.
A C# function that will be run whenever an event grid receives a new event

@ Event Hub trigger I .Ancr-ymou:.

ACr function that will be run whenever an event hub receives a new event

E Http trigger

A C# function that will be run whenever it receives an HTTP request

leT Hub trigger

A C# function that will be run whenever an iot hub receives a new event on the event hub
endpaint.

Queue trigger

A CE function that will be run whenever a message is added to a specified Azure Queue Storage

j Making sure all templates are up to date...

=

Figure 7-5. Select “Http trigger”

The Azure function gets created. You will modify the Azure function code once you
have the custom binding ready.

Implement the Binding Attribute Class

In this section, you’ll add a new project of type .NET Standard Class Library to the
solution called Custom Binding. To add a new project to the solution, right-click the
solution, click Add, and then click New Project. See Figure 7-6.

153

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

. Solution Explorer -
WA~ o-SaE f-=

Search Solution Explorer (Ctrl+;)

I 37 Solution 'FuncBindingDema’ (1 of 1 project) I

4 1G] FuncBindingDemo L= Build Solution 6
P & Dependencies Rebuild Solution
0 gitignore Clean Solution
e onle Analyze and Code Cleanup »
&7 hostjson

Batch Build...
{J local settings.json ik
Configuration Manager...

Manage NuGet Packages for Solution...

(=N

Restore NuGet Packages

Configure Continuous Delivery to Azure...
New Solution Explorer View

Calculate Code Metrics

| neweroject.. I Add 3|
Existing Project... ‘) Add Solution to Source Control..
Existing Web Site...

Paste Ctrl+V

Figure 7-6. Add a new project to the solution

Select Class Library (.NET Standard) as the class type and click Next. See Figure 7-7.

154

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

class library X [=

C# - All platforms v All project types

Class Library (.NET Standard)
A project for creating a class library that targets NET Standard.

Cc# Android i0s Linux macOSs Windows Library

Dj@ Razor Class Library
e

A project template for creating a Razor class library.

c# Linux macOSs Windows Library Web

Class Library (.NET Framework)
A project for creating a C# class library (.dll)

C# Windows Library
Class Library (.NET Core)
A project for creating a class library that targets .NET Core.
C# Windows Linux macOS Library
&°" WPF User Control Library (NET Core
]
| Windows Presentation Foundation user control library

c# Windows Desktop Library

Figure 7-7. Set the type of project as Class Library (.NET Standard)

Provide the name of the project as CustomFormatBinding.

Clear all

Once the project gets created, add the following packages from NuGet:

e Microsoft.NET.Sdk.Functions
e Microsoft.Azure.WebJobs

e Microsoft.Azure.Webjobs.Core

Now let’s add a class named FormatterBindingAttribute.cs in the

CustomFormatBinding project. Right-click the project, click Add, and then click Class.

See Figure 7-8.

155

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

- Solution Explorer

A =Pl

Search Solution Explorer (Ctrl+;)

o-s5a@ p=

31 Solution ‘FuncBindingDemo' (2 of 2 projects)

4 CustomFormatterBinding
P 4 Dependencies
P C* Classl.cs
4 FuncBindingDemo
b 4" Dependencies
[.gitignore
P C* Functionl.cs
/1) host.json
&T local settings.json

Build

Rebuild

Clean

Analyze and Code Cleanup
Pack

Publish...

Scope to This

New Solution Explorer View
Edit Project File

Build Dependencies

0 New Item... Ctrl+Shift+A || Add
O Existing Item.. Shift+Alt+A @ Manage NuGet Packages..
% New Folder Manage User Secrets

REST API Client... £ Setas StartUp Project

Deb

Reference... Eond

Service Reference... & Cut Ctrl+X
% Connected Service X Remove Del

> 1 R

*; (lass... Shift+Alt+C kcakic
_I— Unload Project

Figure 7-8. Add a new class

Place the code shown in Listing 7-3 in the FormatterBindingAttribute.cs class.
You need to create a custom attribute that you can decorate as a binding for the Azure
function. The attribute has a property called DataFileLocation that can point to
the location where the file to be formatted is kept. You decorate this property with
the AutoResolve attribute so that it will be able to resolve the path from the local.

settings.jsonfile.

Listing 7-3. FormatterBindingAttribute Class

using Microsoft.Azure.WebJobs.Description;
using System;

namespace CustomFormatBinding

156

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

{
[Binding]
[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.
ReturnValue)]
public class FormatterBindingAttribute:Attribute
{
[AutoResolve]
public string DataFilelLocation { get; set; }
}
}

Implement the Binding Logic Class

Now let’s implement the binding logic class. Here you will write the logic to convert
the data in the file in a format that the function will need to process the data. Before
you implement the binding logic class, let’s implement a model class that will hold the
formatted data and will be available as an input parameter to the function. Add a class
named FormatterModel.cs in the CustomFormatBinding project and replace the class
code with the code shown in Listing 7-4.

Listing 7-4. FormatterModel Class

using System;
using System.Collections.Generic;
using System.Text;

namespace CustomFormatBinding

{
public class FormatterModel
{
public string DataFilePath { get; set; }
public string Content { get; set; }
}
}

157

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

Now let’s add a class for the binding logic in the CustomFormatBinding project.
You will name the class FormatterBinding.cs. You have an Initialize method in
this class that adds a binding rule that specifies the conversion operation’s logic. The
Convert performs the data formatting activity and must be passed as a parameter for the
BindToInput method. Replace the code in Listing 7-5 with the code generated when you
created the class.

Listing 7-5. FormatterBinding Class

using System.IO;
using Microsoft.Azure.WebJobs.Description;
using Microsoft.Azure.WebJobs.Host.Config;

namespace CustomFormatBinding
{
[Extension("MyFileReaderBinding")]
public class FormatterBinding : IExtensionConfigProvider

{
public void Initialize(ExtensionConfigContext context)
{
var rule = context.AddBindingRule<FormatterBindingAttribute>();
rule.BindToInput<FormatterModel>(BuildItemFromAttribute);
}

private FormatterModel BuildItemFromAttribute(FormatterBindingAttribute
arg)
{
string formattedData = string.Empty;
if (File.Exists(arg.DataFilelocation))
{
formattedData = "{";
string formattedDataAsIs =
File.ReadAllText(arg.DataFileLocation);
// Replace the start [and end]
formattedDataAsIs= formattedDataAsIs.TrimStart(new char[] { '[’
}).TrimEnd(new char[] { ']" });

158

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

// Data formatting activity/logic

string[] tokens = formattedDataAsIs.Split(new char[] { '," });

foreach (var token in tokens)

{
string[] subToken = token.Split(new char[] { ":" });
formattedData = formattedData + "\"" + subToken[0] + "\" :
"+ "\"" + subToken[1] + "\" , ";

}
formattedData = formattedData.Trim().TrimEnd(new char[] { ',
19K
formattedData = formattedData + "}";
}
return new FormatterModel
{
DataFilePath = arg.DataFilelocation,
FormattedData = formattedData
};

Implement the Binding Extension Class

Now let’s implement the binding extension class. Create a new class named
BindingExtension.cs in the CustomFormatBinding project. Place the code in Listing 7-6
in the class. You will invoke the method AddCustomBinding in the Startup class. When this
method gets invoked, it will call the binding formatter class to do the necessary conversion

and return the converted data.

159

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

Listing 7-6. BindingExtension Class

using Microsoft.Azure.WebJobs;
using System;

namespace CustomFormatBinding

{
public static class BindingExtension
{
public static IWebJobsBuilder AddCustomBinding(this IWebJobsBuilder
builder)
{
if (builder == null)
{
throw new ArgumentNullException(nameof(builder));
}
builder.AddExtension<FormatterBinding>();
return builder;
}
}
}

Implement the Binding Startup Class

Now let’s create the startup class that will inject the binding into the runtime execution
context. Add a class called BindingStartup.cs in the CustomFormatBinding project.
Use the code in Listing 7-7 in the class.

Listing 7-7. BindingStartup Class

using CustomFormatBinding;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Hosting;

[assembly: WebJobsStartup(typeof(BindingStartup))]
namespace CustomFormatBinding

{

160

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

public class BindingStartup : IWebJobsStartup

{
public void Configure(IWebJobsBuilder builder)
{
builder.AddCustomBinding();
}
}

Incorporate the Binding in the Azure Function

Now let’s add the custom binding that you created in the Azure function. Make sure you
add a using reference to the CustomFormatBinding project in the function project. You
pass a parameter named formatterModel of type FormatterModel, and you decorate it
with the attribute FormatterBinding. The formatterBinding parameter will have the
formatted data. We created the FormatterBinding attribute and the FormatterModel

in the CustomFormatBinding project earlier. Listing 7-8 shows the code for the Azure
function.

Listing 7-8. Function Class

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.lLogging;

using Newtonsoft.Json;

using CustomFormatBinding;

namespace FuncBindingDemo

{

public static class Functioni

{

[FunctionName("Functioni")]
public static IActionResult Run(

161

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

[HttpTrigger (AuthorizationLevel.Anonymous, "get", "post", Route =
"custombinding/{name}")]

HttpRequest req,

ILogger log,

string name,

[FormatterBinding(DataFileLocation = "%filepath%\\{name}")]
FormatterModel formatterModel)

return (ActionResult)new
OkObjectResult(formatterModel.FormattedData);

Add the filepath parameter and specify the centralized location of the file in the
local.settings.jsonfile. See Listing 7-9.

Listing 7-9. Local.settings.json File

{
"IsEncrypted": false,
"Values": {
"AzurelWebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER_RUNTIME": "dotnet",
“filepath": "C:\\Abhishek\\Test\\"
}
}

Place a file with the content in Listing 7-10 at the location you provided in the
filepathin the local.settings. jsonfile.

Listing 7-10. Content of File to Be Converted by the Binding
[name:Abhishek Mishra,Age:38,subject:maths]

Execute the function. See Figure 7-9

162

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

B C\Users\Abhishek Mish ra\AppData\Local\AzureFunctionsTools\Releases\3.24.2\cli_x64\func.exe

hzure Functions Core Tools

ICore Tools Version: 3.0.3442 Commit hash: 6bfab24b274318421475d996402c399]
Function Runtime Version: 3.0.15417.0

[2021-05-82719:47:19.416Z] Found C:\

sproj. Using for user

ets file cor
Functions:

Functionl: [GET,POST]{http://localhost:7071/api/custombinding/{name

For detailed output, run func with --verbose flag.
[2021-05-82T19:47:32.3372Z] Host lock lease acquired by instance ID '©06000000000)

Figure 7-9. Function execution output

Pass the filename in the function URL route. The binding will convert the data, and
the function returns the converted data in the browser. See Figure 7-10.

< C | ® http://localhost:7071/api/custombinding/abc.txt

{"name" : "Abhishek Mishra" , "Age" : "32" , "subject" : "maths" }

Figure 7-10. Browse to the function

163

CHAPTER 7 CREATING CUSTOM BINDINGS FOR AZURE FUNCTIONS

Summary

In this chapter, you learned what custom bindings are and the scenarios where you
need to use custom bindings. You explored the different steps needed to create a custom
binding, and then you implemented a custom binding using Visual Studio. You created
a custom binding that will convert the data format of an existing data into a format
needed by the function to process the data further. You incorporated the logic for data
conversion in the binding, and then you applied the binding in the function and got the
formatted data without needing to write much code.

The following are the key takeaways from this chapter:

e You can create custom bindings whenever the standard function
bindings do not meet your scenario.

e Youneed to build the custom binding using .NET.
e You can reuse the custom binding across functions.

o The following are the steps to create a custom binding and use it in

an Azure function:

1. Create an Azure function.

2. Implement a binding attribute class.

3. Implement the binding logic class.

4. Implement the binding extension class.

5. Implement the binding startup class.

6. Incorporate the binding in the Azure function.

In the next chapter, you will explore how to create serverless APIs using Azure
Functions.

164

CHAPTER 8

Building Serverless APls
Using Azure Functions
and Azure SQL

Most applications these days have separate client-side and server-side projects. Client-
side applications send a request to the server-side application to interact with the
database or to perform a business operation. Server-side projects are normally a web
API that takes the request from the client app, processes the request, and gives back an
appropriate response that can be later used by the client application to display the data.
In such scenarios, you need to deploy your client and API project in an Azure Web App,
which will need an Azure App Service Plan. When you deploy your apps to an Azure Web
App, you will have to pay monthly costs irrespective of the usage of your apps. This is one
of the areas where Azure Functions shines.

One of the most promising and popular use cases of the Azure Functions service
among developers has been to build serverless APIs. With the micro billing nature and
autoscaling capability of an Azure function, it is an ideal choice to build APIs that are
prone to have unexpected spikes in traffic. With the help of the Azure Functions offering,
you can build highly scalable and cost-efficient solutions.

As you have already learned about HTTP-triggered Azure functions and their use
cases in previous chapters, you are going to use that knowledge to build serverless APIs
using HTTP-triggered functions in this chapter that will run whenever they receive a
request. After being triggered, the APIs processes the request and fetches the data by
interacting with Azure SQL Database and providing a response to the client.

165
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_8

https://doi.org/10.1007/978-1-4842-7122-3_8#DOI

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Structure of the Chapter

This chapter will explore the following aspects of HTTP triggers and Azure SQL:
o Getting started with Azure SQL
o Building a database and table in Azure SQL
o Getting started with HTTP triggers

o Creating serverless APIs using HTTP-triggered functions and
Azure SQL

Objectives

After studying this chapter, you will be able to do the following:
o Create serverless APIs using Azure Functions

e Interact with Azure SQL from your functions

Problem Statement

Let’s say you are working for a large multinational company called Asgard Inc., which is
aleading ecommerce firm. You have a presence across the globe and provide services to
more than 180 countries with a consumer base of more than 500 million users.

Product managers need to manage the inventory and product information of
all the products around the world. With the unpredictable nature of the customers’
consumption patterns, your application usage can increase and decrease at any time
without giving you a warning to react to a sudden traffic surge.

To handle such traffic, your team is tasked with building an API project that will be
consumed by a client-side application, which can scale up and down to handle all the
requests coming without letting your application crash. Your application needs to be
globally available, highly scalable, and cost-effective.

Previously your team was planning to build a traditional web API for the application
that will be later deployed in an Azure Web App. To make the API scalable, your team
had planned to leverage the autoscale feature of the App Service Plan by defining
autoscale rules for the application to scale out. Though this would have been a really

166

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

good choice to make your application scalable, the cost implications were quite high.
You had to pay monthly fees to your cloud vendors for the dedicated resources you
used to host your application irrespective your application’s usage. In other words, even
ifyour API didn’t receive a single request from the client, you had to pay the monthly
fees. And every time your app scaled out to meet a surge in traffic, you had to pay for the
scaled-out instance too, irrespective of resource consumption.

While your manager was elaborating on the plan for the project with the team
members, it hit you that building serverless APIs for this project would be the perfect
solution. By its inherent nature, a serverless API is autoscalable, which means you don’t
need to worry about writing conditions to enable autoscaling anymore, and they are
micro billed; i.e., you pay for per-second resource consumption and execution. So, you
pay only for the time your application actually runs.

Though the proposal for building serverless APIs for the application meets all the
requirements of the project, your manager is a bit skeptical about using serverless APIs
for production workloads yet. To check the viability of the solution, he has asked you to
come up with a proof of concept on building serverless APIs for all product-related tasks
that will be interacting with Azure SQL Database. See Figure 8-1.

<

Create

/<Update> \ S
— &
\ < >"‘/

GetAllProducts

<

Delete

Figure 8-1. Architecture diagram of the proof of concept

167

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

So, you need to build the APIs to perform the following operations for the proof of

concept:
1.
2.
3.
4.

5.

Create the product.

Update the product.
Get all the products.
Get a product by ID.

Delete a product by ID.

To complete this proof of concept, you need the following resources:

Active Azure subscription

Azure SQL Database

Visual Studio 2019 Community edition
Azure development workload
Postman

Microsoft SQL Server Management Studio 17 or Azure Data Studio

We have identified all the operations that need APIs to complete the proof of

concept. Let’s start building the proof of concept.

Creating an Azure SQL Database Instance in the
Azure Portal

According to Microsoft, Azure SQL Database is a fully managed platform-as-a-service

(PaaS) database engine that handles most database management functions such as

upgrading, patching, backup, and monitoring without user involvement. Azure SQL

Database runs on the latest stable version of the SQL Server Database Engine.

In this section, you’ll learn how to create an instance of Azure SQL Database to store

data for your proof of concept. To create an instance of Azure SQL Database, go to the

Azure portal. Type Azure SQL in the search bar and click the result. See Figure 8-2.

168

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Microsoft Azure £ azure say I

Services See a

Azure servi

B Azure SQL I

Figure 8-2. Click Azure SQL

Now click Create to create an instance of Azure SQL Database. See Figure 8-3.

Azure SQL =

Default Directory

-+ Create Reservations @ Manage view v Refresh i Export to CSV C‘S’ Open que
g P P y

| Filter for any field... | Subscription == Azure Pass - Sponsorship Resource group == all X

Figure 8-3. Create an instance of Azure SQL Database

You will need to select a deployment option in this window. Let’s select “SQL
databases” and leave the resource type as “Single database.” Click Create. See Figure 8-4.

Home > Azure SQL >

Select SQL deployment option

Microsoft

Q feedback

How do you plan to use the service?

@ 5QL databases B SQL managed instances
Best for modern cloud applications. Hyperscale and Best for most migrations to the cloud. Lift-and-shift
serverless options are available. ready.
Resource type Resource type
l Single database s I | Single instance v

Show details Show details

Figure 8-4. SQL deployment options

169

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

On the Basics tab of the Create SQL Database screen, select the subscription. Then
select the resource group that you want this resource to be created in. For the database
name, enter Product and select the server if you want this database to be created in one
of your existing servers. If you want to create a new server, click Create New. Now you
will be required to fill in the following fields:

e Server Name

e Server Admin Login
e Password

¢ Confirm Password

e Location

Once you have filled in all these required fields, click OK. Keep Elastic Pool option
as No. Click Configure Database and set the compute tier to Serverless. After you fill in all
the required fields for the Basic tab section, click Next : Networking.

On the Networking tab, select the Public endpoint as the connectivity method and select
Yes for Add Current Client IP Address, as shown in Figure 8-5. Now click “Review + create.”

Create SQL Database

Microsoft

Configure network access and conneactivity for your server. The configuration selected below will apply to the selected
server ‘productdb’ and all databases it manages. Learn more

Network connectivity

Choose an option for configuring connectivity to your server via public endpoint or private endpoeint. Choosing no access
creates with defaults and you can configure connection method after server creation. Leamn more 2

Connectivity method * (@ O No access

(®) public endpoint

() Private endpoint

Firewall rules

Setting "Allow Azure services and resources to access this server' to Yes allows communications from all resources inside
the Azure boundary, that may or may not be part of your subseription. Learn more B2
Setting "Add current client IP address’ to Yes will add an entry for your client IP address to the server firewall.

M M s Y
Allow Azure services and resources to (TR ves)
access this server *

dd current client IP address * | Mo Yes :.'

Review + create [< Previous | Next : Security > |

Figure 8-5. Networking tab

170

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

On the “Review + create” tab, you will see a summary of all the configuration and
options you have selected to create this resource along with a monthly estimated cost for
this resource. Click Create to provision this resource in Azure.

Once the resource has been provisioned, go to the resource. Get the server name and
connection string from the Overview section of your resource, as shown in Figure 8-6.

Home

Product (productdb/Product) = -

SOL database

I,’- bea.—:" {Ctri+) I ®] Copy 'O Restore T export @ Setserverfirewall [i] Delete J° Connectwith.. » O Feedback
: © Eental
- Resource group {change) SSNSIIImS
H Activity log rg-chdg | producidb.databasewindows.net |
¢ Tas Status

Online Show database connection stings

Pa Dizgnose and solve problems
Location Pricing tier

& Quick start East US General Purp

Subscription (chan Auto-pause delay
Azure Pass - Spon hip 1 hour

B Query editor (preview)

Power Platform Subscription ID Earliest restore point

of02b3ae-5fed-4388-0463-8e32823¢5383 No restore point available
I Power Bl (preview)
Tags (change)
€ Fower Apps (preview) Click here to add tags

Figure 8-6. Overview of your resource

To get the connection string, you will need to click the “Show database connection
strings” link to get the connection string depending on the SQL Server driver. You are
going to copy the connection string value from the ADO.NET tab. Note that you will have
to replace {your_password} with your server password.

Let’s open SSMS to create the ProductInformation table in your product database,
which will be used by your serverless APIs to perform various operations. Enter the
server name of your Azure SQL Database instance. You can find it in the Overview
section of the resource in the Azure portal, as shown in Figure 8-6. Then set the
authentication type to SQL Server Authentication, provide your server admin login
name and the password that you entered while creating the server, and click Connect, as
shown in Figure 8-7, to connect with your Azure SQL Database resource via SSMS.

171

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

;1? Connect to Server !
SQL Server
3 Database Engine
Server name: Iproduddb.database windows net v |
Authentication: [SQL Server Authentication v |
Login: Iashirwad vl
Password: I """"" l

[] Remember password

| Connect || Cancel Help | | Options >

Figure 8-7. Connect with the Azure SQL Database instance using SSMS

Once you have connected with the Azure SQL Database instance that you
have created in the Azure portal, execute the query shown in Listing 8-1 to create a
ProductInformation table to store product information.

Listing 8-1. Create the Productinformation Table

CREATE TABLE [dbo].[ProductInformation](
[Product ID] [int] IDENTITY(1,1) NOT NULL,
[Product Name] [varchar](40) NOT NULL,
[Product Description] [varchar](40) NOT NULL,
[Product Price] [int] NOT NULL,

[Product Quantity] [int] NOT NULL,
[Category Name] [varchar](40) NOT NULL

Go

After creating the ProductInformation table in your product database, you are all set
to build your serverless APIs for the proof of concept.

172

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Building Serverless APIs for the Proof of Concept

An Azure function can be used to build event-driven serverless solutions; in addition,

you can build serverless APIs with the help of HTTP-triggered functions. In the previous

chapter, we covered the different concepts of HTTP-triggered functions such as routing

while building a to-do API, which interacts with table storage using bindings.

While building the proof of concept, you will learn how to interact with an instance
of Azure SQL Database using ADO.NET from Azure Functions. You'll build five APIs for
the purpose of this proof of concept, for the following tasks:

1.

CreateProduct function: This HTTP-triggered function
will let the product managers create new products in your
ProductInformation table.

URL endpoint: https://{functionapp-url}/api/product
Request method: POST

UpdateProduct function: This HTTP-triggered Azure function
will let the client-side app update any product information such as
product price, description, category, etc., of the existing products
present in your ProductInformation table.

URL endpoint: https://{functionapp-url}/api/product
Request method: PUT

GetProduct function: This HTTP-triggered Azure function

will let the client-side app get the details like product name,
description, price, etc., of all the products present inside of your
ProductInformation table.

URL endpoint: https://{functionapp-url}/api/product
Request method: GET

GetProductByld function: This HTTP-triggered Azure function
will let the client-side app get the details such as product

name, description, price, etc., of specific products in your
ProductInformation table depending on the product ID specified
in the URL route.

173

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

URL endpoint: https://{functionapp-url}/api/product/{id}
Request method: GET

5. DeleteProduct function: This HTTP-triggered Azure function will
let the client-side app delete a specific product present in your
ProductInformation table depending on the product ID specified
in the URL route.

URL endpoint: https://{functionapp-url}/api/product/{id}
Request method: DELETE

As we have discussed the work of all the HTTP-triggered functions that you need
for the proof concept along with their URL endpoints and request method, let’s start
building them.

Open Visual Studio 2019 in your workstation and click “Create a new project.” See
Figure 8-8.

Visual Studio 2019

Open recent Get started

Search recent (Alt+5) p- CG\B Connect to a codespace

Create and manage cloud-powered development
environments
4 Yesterday

m FunctionApp.sin 3/29/2021 1219 PM 4 Clone a I"E'pOSitO[‘y
BiccenaRinctunisy Get code from an online repository like GitHub or

Azure DevO)
4 This week ure iz

m ACD.BlobStorage.sin 3/28/2021 7:40 AM (-)@ Open a QFOJEC'(o=altion

D:vAzure Community Days\AzureDeveloperCommunity,.. Open a local Visual Studio project or sin file

m AzureDeveloperCommunit... 3/27/2021 11:12 PM

D:\vAzure Community Days\AzureDeveloperCommunity C) Open a local foldel—
m (e e 342472001 11:27 AM Navigate and edit code within any folder
D:\Git Repe'\blazer-static-web-app-demo
4 This month ¥ Create a new project
m codewithashirwad.sin 3/17/2021 11:21 AM EO";::; ::;:J“‘ template with code scaffolding
Centinue without code =»

Figure 8-8. Create a new project

Now select Azure Functions as the project template for the project and click Next.
See Figure 8-9.

174

CHAPTER 8

BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

= [m] b
Search for b lates (Alt-5) -
p roj ect earch for templates (Alt-35) 2 Clear all
= - Azure - Cloud -
Recent project templates
O Azure Cloud Service (extended support) s
B A project for creating a scalable service ged by Azure R M,
7 Azure Functions o Azure Cloud Services (extended suppert) is in public preview.
_ Windows Forms o [haurel [[Goud
i App (MET c»
Framework) < > Azure Functions
Atemplate to create an Azure Function project.
= Mobile App s
= (Xamarin.Forms) (<] Azure Cloud
J\SP.!«IE'I’_ Web Service Fabric Application
& application (NET =] A project template for creating an always-on, scalable, distributed application with
Framework) Microsoft Azure Service Fabric.
e Console App (NET e (=3 Azure Cloud

Framework)

Q Azure Cloud Service (classic)

A project for creating a scalable service that runs on Microsoft Azure.

(<] Azure

Cloud

Back

Figure 8-9. Select Azure Functions as the project template

You will be required to fill in the project name, project location, and solution name
on this screen. Once you have filled in all of these details, click Next. See Figure 8-10.

Configure your new project

Azure Functions ¢ Awre Cloud

Project name

I ServerlessAPls.Product

Lecation

I CAUsers\Ashinvad Satapathi\sourcelrepos

Selution name)

I‘Scmrlessnvls

[Place solution and project in the same directary

Figure 8-10. Enter the project information

175

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

As an Azure function can have only the trigger type, select “Http trigger” as the
trigger type, and set Authorization Level to Anonymous as it is a proof of concept. Set the
runtime and storage account to Azure Function V3 (.NET Core) and Storage Emulator,
respectively. Once you have filled in all the required information as mentioned, click
Create. See Figure 8-11.

Create a new Azure Functions application

IAzure Funetions v3 (.NET Core) . I

A C# function that will be run whenever an event hub receives a new event “ Storage account (AzureWebJobsStorage)

ﬁ Http trigger ftorage emulator -I

A C= function that will be run whenever it receives an HTTP request A Some capabilities may require an Azure storage
account.

loT Hub trigger Authorization level

& C# function that will be run whenever an iot hub receives a new event on the event hub I.ﬂnonymous -I

endpeint,

[] enable Open Api Support
Kafka output

A C# function that will send a message to a specified Kafka Topic

Kafka trigger

A C= function that will be run whenever 3 message is added to a specified Kafka Topic

Queue trigger

A C# function that will be run whenever a message is added to a specified Azure Queue Storage

RabbitMQ trigger

A C= function that will be run whenever a messaqe is added to a specified RabbitMQ queue

Get started with Azure Functions

Figure 8-11. Select the trigger type and authentication level

You may wonder what authorization levels are and why you need them in an HTTP-
triggered Azure function. The authorization level defines whether or not you need to
send a function/master key in the payload of the request to invoke the function. This
helps us to restrict access from unauthorized users to invoke your function.

There are three types of authorization levels for HTTP-triggered Azure functions as
follows:

¢ Anonymous: Any function that has its authorization level set as
Anonymous can be invoked by any users without the need to provide
an API key in the request payload.

176

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

o Function: By defining the authentication level of your HTTP-
triggered Azure function as a function, you require a function-specific
key to be provided in the request payload to invoke it.

e Admin: With the authentication level set as Admin, you need to send
the master key of your function app in the request payload to invoke
the function.

Note Due to increased permissions granted in your function app by the master
key, you should not share this key with any third parties or distribute the master
key in client applications. Use it with caution as master keys provide administrative
access and allow you to invoke all other HTTP-triggered functions present in your
function app without requiring the function key. They also have the power to manually
invoke Azure functions with other trigger types like timer-triggered functions.

Visual Studio will create a function project out of the box along with an HTTP-
triggered function named Function1, which has the logic to return a response of “Hello”
along with the name passed in the query string or the request body.

Let’s delete this function as you don’t want this function as part of your proof of
concept. Now, open the local.settings.json file and add your database’s connection
string here as a key-value pair, as shown in Listing 8-2. As mentioned earlier, you can find
the connection string in the Overview section of your resource. Alternatively, you can use
the Connection Strings menu item in the sidebar of your resource’s window in the Azure
portal. In this example, we will be using the connection string to connect with the instance
of Azure SQL Database from the Azure functions to perform necessary operations.

Listing 8-2. local.settings.json

{
"IsEncrypted": false,
"Values": {
"AzurelWebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER_RUNTIME": "dotnet",
"DBConnectionString": "[Enter your connection string here]"
}
}

177

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

As you have added the connection string in the local.setting. json file to your
project, you need to install the System.Data.SqlClient NuGet package to interact with
your Azure SQL Database instance. Use the command shown in Listing 8-3 to install it
using the Package Manager Console.

Listing 8-3. Install the System.Data.SqlClient Package
Install-Package System.Data.SqlClient -Version 4.8.2

After installing the NuGet package, right-click the solution and click Add » Class
to create a Product class representing the records of your ProductInformation table,
as shown in Listing 8-4. We will use this class to perform various operations in your
functions.

Listing 8-4. Product Class

public class Product

{
public int Product ID { get; set; }
public string Product Name { get; set; }
public string Product Description { get; set; }
public int Product Price { get; set; }
public int Product Quantity { get; set; }
public string Category Name { get; set; }

}

After creating the Product class, right-click the solution and click Add » New Azure
Function to create your Azure function. Azure Functions will be selected as the type.
Enter the name of the function as CreateProduct and click Add. See Figure 8-12.

178

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

4 Installed Sortby: Default -| i |i= Search (Ctrl+E) Fabd|
{4 Vool Ches gjc Class Visual C# ltems [y 1YPe: Visual C¥ ems j
- 1
Ende = Add an Azure Function to the project. '
ot Content Page Visual C# ltems |
General <>
b Web o
SOeL Sarver [:';J Content Page (CZ) Visual C# lterns
Srm _Ibems Content View Visual C# terns
Xamarin.Forms <my
hi: c=
Cophic gj Content View (C2) Visual C# ltems
b Online
Flyout Page Visual C# temns
|y
List View Page Visual C= lterns
<m)
Tabbed Page Visual C# tems
[iH
I f Azure Function Visual C# tems
cn
gj Class for U-5QL Visual C# Iterns
o0 Interface Visual C# ltems
View Cell Visual C# ltems
>
| o [Viewsl C2 Warme
Mame: I CreateProduct I

Figure 8-12. Create a new Azure function

You will be prompted to select the trigger type and authorization level of your
CreateProduct function. Select “Http trigger” as the trigger type and Anonymous as the
authorization level. Once you have selected the trigger type and authorization level, click
Add to configure the function. See Figure 8-13.

179

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

New Azure Function - CreateProduct X

o o a Authorization level
[=] Service Bus Queue trigger
Fnonyrncus r-l
7= Http trigger
["] Enable Open Api Support
Timer trigger

8 Queue trigger

Blob trigger

[l Event Grid trigger

[Event Hub trigger

ﬂ loT Hub trigger

[=] Service Bus Topic trigger
Durable Functions Orchestration
Cosmos DB Trigger

SendGrid

SignalR

Figure 8-13. Configure the CreateProduct function

Visual Studio will generate a default Azure function out of the box that does the same
task as described for function1 earlier. You will configure the route of this function by
overriding the route parameter of the HttpTrigger attribute’s value as product and pass
POST as the only request method, as you will be using the function as your serverless
API to create a new resource. By mentioning only POST as the request method in the
HttpTriggerAttribute constructor, you are restricting this function to be invoked only
by POST requests.

Now you will read the JSON payload present in the request body and deserialize
it to an object called productData with a Product type. Now you will use the
GetEnvironmentVariable method of the Environment class to get the value of your
connection string from the local.settings.json file and then use it to create a
SQL connection instance called connection. Now you will create a cmd object of the
SqlCommand type and pass queryString as the parameter. queryString is a variable
containing the T-SQL query to insert the record into the ProductInformation table
of your database. You pass the values to the SqlParameterCollection by using the
productData object, which contains the product data sent in the request body of

180

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

the request payload. After you add the values of the parameters, you will call the
ExecuteNonQuery method to execute the T-SQL statement and finally use the close
method of the connection object to close the connection.

You add the whole business logic of your CreateProduct function inside a try-catch
block. This will ensure that your function handles exceptions in a graceful manner. If
everything goes well, you will return a 200 response code along with the productData
object to the user. If you get an exception, you will return a 400 response code along
with the error message to the user. Refer to Listing 8-5 for the entire code for the
CreateProduct function.

Listing 8-5. CreateProduct Function Code

using System;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.logging;

using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{

public static class CreateProduct
{
[FunctionName("CreateProduct")]
public static async Task<IActionResult> Run(
[HttpTrigger (AuthorizationLevel.Anonymous, "post", Route =
"product™)] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function processed a request.");

181

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

try

{
string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();

Product productData = JsonConvert.DeserializeObject<Product>
(requestBody);

using (SqlConnection connection = new SqlConnection
(Environment.GetEnvironmentVariable("DBConnectionString™)))
{

string queryString = @"INSERT INTO [ProductInformation]

(Product_Name,Product Description,Product Price,

Product_Quantity,Category Name)

VALUES(@Product Name,@Product Description,

@Product Price,@Product Quantity,

@Category Name)";

using (SqlCommand cmd = new SqlCommand(queryString))
{
cmd.Parameters.AddwWithValue("@Product Name",
productData.Product Name);
cmd.Parameters.AddwWithValue("@Product Description”,
productData.Product Description);
cmd.Parameters.AddWithValue("@Product Price"”,
productData.Product Price);
cmd.Parameters.AddWithValue("@Product Quantity"”,
productData.Product Quantity);
cmd.Parameters.AddWithValue("@Category Name",
productData.Category Name);
cmd.Connection = connection;
connection.Open();
cmd. ExecuteNonQuery();
connection.Close();

}
return new OkObjectResult(productData);

182

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

}
catch (Exception ex) {

return new BadRequestObjectResult(ex.Message);

Note While building serverless APIs using HTTP-triggered functions, avoid long-
running processes as you will get a request timeout response if your HTTP-triggered
function does not respond to the request in 230 seconds. Irrespective of the function
timeout setting, the timeout for an HTTP-triggered function to give a response is 230
seconds. If you want to build a function to execute long-running processes, try using
a durable functions async pattern or return an immediate response to the client by
passing the request payload to a queue for further processing.

Asyou have created the CreateProduct function, let’s create your next function,
called UpdateProduct, that you will use to update the product details of an existing
product in your ProductInformation table. The process is the same as creating the
CreateProduct function. After you have created the UpdateProduct function, override
the route parameter of the HttpTrigger attribute as product and pass PUT as the only
request method for this function, as you are going to modify all the values of existing
resources by using the values specified in the request body of the request payload.

As you did with the CreateProduct function, let’s read the data from the request
body of the request payload and deserialize it into a object called productData of
the Product type. Then use a block of ADO.NET code similar to the one used in the
CreateProduct function. The few differences here are the query string and the addition
of a new parameter to the SqlParameterCollection called Product_ID. You will modify
the query string with a T-SQL statement to update all the records of a product depending
on the value Product_ID. Similar to the CreateProduct function, you place your
business logic of the function in a try-catch block to handle exceptions. If your function
runs successfully without getting any error or exception, it will return a 200 response
code along with the updated product data. Refer to Listing 8-6 for the entire code for the
UpdateProduct function.

183

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL
Listing 8-6. UpdateProduct Function Code

using System;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.logging;

using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{
public static class UpdateProduct

{
[FunctionName("UpdateProduct™)]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "put", Route =
"product™)] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function processed a
request.");

try

{
string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();

Product productData = JsonConvert.DeserializeObject<Product>

(requestBody);

using (SqlConnection connection = new SqlConnection

(Environment.GetEnvironmentVariable("DBConnectionString")))

{

184

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

string queryString = @"UPDATE [dbo].[ProductInformation]
SET [Product Name] = @Product Name,[Product
Description] = @Product Description,[Product Price]

= @Product Price,[Product Quantity] = @Product_
Quantity, [Category Name] = @Category Name WHERE
[Product ID] = @Product ID";

using (SqlCommand cmd = new SqlCommand(queryString))
{
cmd.Parameters.AddwWithValue("@Product Name",
productData.Product Name);
cmd.Parameters.AddWithValue("@Product Description”,
productData.Product Description);
cmd.Parameters.AddWithValue("@Product Price"”,
productData.Product Price);
cmd.Parameters.AddWithValue("@Product Quantity",
productData.Product Quantity);
cmd.Parameters.AddWithValue("@Category Name",
productData.Category Name);
cmd.Parameters.AddwWithValue("@Product ID",
productData.Product ID);
cmd.Connection = connection;
connection.Open();
cmd. ExecuteNonQuery();
connection.Close();

}
return new OkObjectResult(productData);

}

catch (Exception ex)

{

return new BadRequestObjectResult(ex.Message);

185

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Now that you have created the CreateProduct and UpdateProduct functions, let’s
create the DeleteProduct function in a similar way. Since the work of this function is
to delete records depending on the value of the ID passed in the route, you will need to
override the route parameter of the HttpTrigger attribute as product/{id:int} and
pass DELETE as the only request method for this function. After you implement these
changes, you need to add a new parameter called id of the Integer type in your run
method. The value passed in the function route will be stored in this id variable. Let’s go
into the method body of your function. Unlike the previous functions, you don’t use the
data from the request payload here. You will be deleting the record of the product from
your ProductInformation table depending on the id value passed in the function route
using ADO.NET.

Most of the ADO.NET code for the DeleteProduct function to interact with
the database will be similar with the other functions. The notable difference is the
queryString that you will pass to the cmd object of the Sq1Command type along with the
number of parameters used. You define a simple delete statement in the queryString
variable to delete a record whose Product_ID is equal to the value of id passed in the
function route. Like the previous two functions, you wrap the business logic in a
try-catch block to handle exceptions graciously. If your function is able to delete the
records without getting any exception, then it will return a 200 response code with a
message stating Product records were deleted successfully; if there is an exception, then
it will give a 400 response code along with the error. Refer to Listing 8-7 for the entire
code of the DeleteProduct function.

Listing 8-7. DeleteProduct Function Code

using System;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

186

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

namespace ServerlessAPIs.Product

{

public static class DeleteProduct

{
[FunctionName("DeleteProduct")]

public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "delete", Route =
"product/{id:int}")] HttpRequest req,int id, ILogger log)

log.LogInformation("C# HTTP trigger function processed a request.");

try

{
using (SqlConnection connection = new SqlConnection
(Environment.GetEnvironmentVariable("DBConnectionString")))

{
string queryString = @"DELETE FROM [dbo].
[ProductInformation] WHERE [Product ID] = @Product ID";
using (SqlCommand cmd = new SqlCommand(queryString))
{
cmd.Parameters.AddWithValue("@Product ID", id);
cmd.Connection = connection;
connection.Open();
cmd. ExecuteNonQuery();
connection.Close();
}
}

return new OkObjectResult("Product record were deleted
successfully ");

187

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

catch (Exception ex)

{

return new BadRequestObjectResult(ex.Message);

Now that you have created the CreateProduct, UpdateProduct, and DeleteProduct
functions, you are left with two more functions to build, i.e., GetProducts and
GetProductById. Both these functions share the common objective of getting the
product data from the ProductInformation table. The difference is that GetProducts
needs to fetch all the records present in the ProductInformation table, while
GetProductById only needs the records for a particular product ID from the
ProductInformation table

Let’s create the GetProducts function now like you created the previous functions
in Visual Studio 2019. Because you want the URL endpoint for this function to be
api/product, you need to override the route parameter of the HttpTrigger attribute as
product and pass GET as the only request method since you want to fetch the details of
an existing resource.

In this function, you don’t need any data from the request payload or from the
function route to run the function. You will write similar ADO.NET code as in the
previous function to interact with the database with the cmd object of the Sq1Command
type but use a different queryString that contains a T-SQL query to fetch all the records
present in the ProductInformation table along with using the ExecuteReader method
instead of ExecuteNonQuery method this time. We will be storing the data returned after
the ExecuteNonQuery method in a variable called oReader of SqlDataReader type. After
this, we iterate through the data present in the oReader object and store the records
present inside the oReader object in an object called productData, which is a list of
products.

Like your previous functions, you have added your business logic inside a try-catch
to handle exceptions graciously. If your function runs without getting any exception,
then it will return a 200 response code along with a list of products, and if there is an
exception, then it will give a 400 response code along with the error. Refer to Listing 8-8
for the entire code of the GetProducts function.

188

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Listing 8-8. GetProducts Function Code

using System;

using System.Collections.Generic;
using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Logging;
using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{

public static class GetProduct
{
[FunctionName("GetProduct")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get",
Route = "product")] HttpRequest req,
ILogger log)

log.LogInformation("C# HTTP trigger function processed a
request.");

try

{
List<Product> productData = new List<Product>();
using (SgqlConnection connection = new SqlConnection
(Environment.GetEnvironmentVariable("DBConnectionString")))
{

= @"SELECT [Product ID]

, [Product Name]

, [Product Description]

,[Product Price]

string queryString

189

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

,[Product Quantity]
,[Category Name]
FROM [dbo].[ProductInformation]”;
SqlCommand cmd = new SqlCommand(queryString, connection);
connection.Open();
using (SqlDataReader oReader = cmd.ExecuteReader())

{
while (oReader.Read())

{

Product productInfo = new Product();
productInfo.Product ID = (int)oReader["Product ID"];
productInfo.Product Name = oReader["Product
Name"].ToString();
productInfo.Product Description = oReader
["Product Description"].ToString();
productInfo.Product Price = (int)oReader
["Product Price"];
productInfo.Product Quantity = (int)oReader
["Product Quantity"];
productInfo.Category Name = oReader["Category
Name"].ToString();
productData.Add(productInfo);

}
connection.Close();
}
}
return new OkObjectResult(productData);
}
catch (Exception ex)
{
return new BadRequestObjectResult(ex.Message);
}

190

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

You have created four of the five serverless APIs required to complete your proof of
concept. The last one remaining is GetProductById. As mentioned earlier, this function
will need to fetch data for a particular product from the ProductInformation table of
your database depending on the Product_ID value passed in the function route.

Let’s create the GetProductById function like you created the rest of the functions
using Visual Studio. As you wanted to pass the Product_ID value to this function using
the function route, you will have to override the route parameter of the HttpTrigger
attribute as product/{id:int} and pass GET as the only request method. After making
these changes, you need to add a parameter id of the Integer type to store the value
of the Product_ID passed in the function route as was the case in the DeleteProduct
function.

The business logic for GetProductById and GetProducts is similar, so let’s copy the
business logic of the GetProducts function and paste it inside the run method of the
GetProductById function. You need to make a few changes in the function’s business
logic now to add the desired functionality in this function.

The few changes are the addition of a where condition in the queryString variable
to filter the records and fetch the record whose Product ID matched with the value
of id passed in the function route and the addition of a parameter and its value to the
SqlParameterCollection of the cmd object of the SqlCommand type. Here you use the
ExecuteReader method to get the record from the Azure SQL Database instance, as was
the case in the GetProducts function. But you are expecting a single product record here
instead of multiple records as the Product_ID is a unique identifier for the products; thus,
you can have only one product per Product_ID. We don’t need to any other changes in
the business logic. If your function runs without any exceptions, then it will return a 200
response code along with the product information of the product whose Product_ID
matched with the value of id passed in the function route. Refer to Listing 8-9 for the
entire code of the GetProductById function.

Listing 8-9. GetProductByld Function Code

using System;

using System.Collections.Generic;
using System.Data.SqlClient;
using System.IO;

using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

191

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{
public static class GetProductById

{
[FunctionName("GetProductById")]
public static async Task<IActionResult> Run(
[HttpTrigger (AuthorizationLevel.Anonymous, "get", Route =
"product/{id:int}")] HttpRequest req, int id, ILogger log)

log.LogInformation("C# HTTP trigger function processed a
request.");

try
{
List<Product> productData = new List<Product>();
using (SqlConnection connection = new SqlConnection
(Environment.GetEnvironmentVariable("DBConnectionString")))
{
string queryString= @"SELECT [Product ID]
, [Product Name]
, [Product Description]

, [Product Quantity]
,[Category Name]
FROM [dbo].[ProductInformation] WHERE
[Product ID] = @Product ID";
SqlCommand cmd = new SqlCommand(queryString,
connection);
cmd.Parameters.AddWithValue("@Product ID", id);

[
[
, [Product Price]
[
[

192

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

connection.Open();
using (SqlDataReader oReader = cmd.ExecuteReader())
{
while (oReader.Read())
{
Product productInfo = new Product();
productInfo.Product ID = (int)oReader
["Product ID"];
productInfo.Product Name = oReader["Product
Name"].ToString();
productInfo.Product Description = oReader
["Product Description"].ToString();
productInfo.Product Price = (int)oReader
["Product Price"];
productInfo.Product Quantity = (int)oReader
["Product Quantity"];
productInfo.Category Name = oReader["Category
Name"].ToString();
productData.Add(productInfo);
}
connection.Close();
}
}
return new OkObjectResult(productData);
}
catch (Exception ex)
{
return new BadRequestObjectResult(ex.Message);
}
}
}
}
And with this you have developed all the serverless APIs required to complete the
proof of concept.

193

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Note We can use ORM frameworks like EFCore and micro-ORMSs like Dapper
to interact with the database too. Azure Functions supports the use of such ORM
frameworks in addition to supporting ADO.NET.

Testing the Serverless APIs for the Proof of Concept

Now that you have developed all the serverless APIs required for the proof of concept,
let’s perform a sanity test on the functionalities of your Azure functions before
submitting them to your manager. We will be using Postman to send requests to your
serverless APIs.

Before you open Postman and start sending requests to your endpoints, you need to
run your function project. Run your function project locally in Visual Studio by clicking
the highlighted region in Figure 8-14.

D Fe Edt View Gt Project Build Debug Tet Anabze Tools Extensions Whndow Help | Search (Gt () P ServerbessAPls @

e - [-2WF 90 - Debug - AnyCPU ..‘ B. 57 =5 M - 1 LheShare ST

g DeleteProduct.cs GetProduct.cs UpdateProduct c5 Product.cs CreateProduct.cs « T @ Solution Explorer -8 g
E [SesverlessAPls Produst « | %2 ServerlessAPis Product GetProcuctByld - @ AuniHitpRequest req int id, Legger leg) kS 68 b-528m L= -’:
= 1 Susing System; R i L p E
arch Seduticn Explorer (Chil) =
2 2 using System.Collections.Generic; o ROVEr R 2 g
-] 8 . [l i -3
3 using System.Data.SqlClient; R Sclution ServerlessAPIs (1 of 1 project)
? 4 using System.10; 4 = ServeriessAPls Product 3
™ s using System.Threading.Tasks; b & Depencencies §
¥ 6 using Microseft.AspletCore Http; 3 o Fr.:.pzmu =
g T using Microsoft.AspletCore.Mve;] 1 gitignere
2 using Microsoft.Azure.Weblobs; b e CresteFroduct.cs
a using Microsoft.Azure. Weblobs. Extensions.Http; o DQI:HDN’M(;
12 using Microsoft.Extensions.Logging; : L x;c:w.;}s
K 3 o« reductByld.cs
11 5 Newtonsoft. Tson; "
12 £T hestjion
@ 1 local settings j;
13 sinamespace ServerlessAPIs.Product | B : gp“d“ ngrjEon
roduct.es
a { or . b € UpdateProduct.cs
15 = public static class GetProductByTd
16 {
17 [FunctionNane("GetProductByld™)]
18 public static async Task<IActionResults Run(

% | [HttpTrigger{Authorizationlevel.Anonynous, "get™, Route = “product/{id:int}")] HttpRequest req,

2 - ILagger log)

21 {

2 log.LogInformation(C# HTTP trigger function processed a request.”);

23

24 =] try

25 {

6 ListeProduct> productData = new List<Product>();

7 - using (SqlConnection connection = new SqlConnection{Environment.GetEnvironmentVariable("0BCo

28

2 |2 string queryString = @"SELECT [Product_ID)

L . [Product_Name] -
w08% - o0 a1 =y * 1 * Ln:3 Ch72 SPC CRLF LiveS. Seluti. Team.. Motifi. GitChe

Web Publish Activity Erorlist.. Output Package Manager Console

Figure 8-14. Start the function project

194

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Now Visual Studio will start the Azure Functions Core Tools that will host all your
HTTP-triggered functions (serverless APIs) and display their endpoints along with the
supported request method type for each of them and the function name, as shown in
Figure 8-15.

B C:\Users\Ashinwad Satapathi\AppDatatLocal\AzureFunctionsTools\Releases\3.23.00cli_x64\func.exe - (m] X

Bzure Functions Core Tools
Core Tools Version: 3

3. it hash: fb42adedb7fdc85fbdebcfc8d743fF7d5e9122ae
unction Runtime Version: 3.

[2021-983-38T21:20:82.270Z] H ired ir nce ID '@opess

Figure 8-15. List of functions and their endpoints

As your function is up and running now, let’s open Postman and create a collection.
Inside the collection, add a request for CreateProduct. Now define the request method as
POST, paste the endpoint of the CreateProduct function as shown in the Azure Functions
Core Tools, and then click the Body tab to add the product information in the payload in
key-value pairs. After you have configured all this information in the request, click Send to
send a request to the CreateProduct API; the API will use the information shared in the
request payload to create a new record in the ProductInformation table and return a 200
response code along with the product information, as shown in Figure 8-16.

195

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

ChO& | CreateProduct [save ~
POST ~ http:/flocalhost:7071/apifproduct Send N
Params Authorization Headers (8) Body @ Pre-request Script Tests Settings Cookies
none form-data x-www-form-urlencoded @ raw binary GraphQL Text

'Product_ID":4,

'Product_Name':'Samsung M30°,
‘Product_Description':'It is & handy smartphone’,
'Product_Pxrice':30,

'Product_Quantity':10,

‘Category_Name': ' smartphone’

= R« R T SO TV

]

Body Cookies Headers(4) TestResults .g. 2000 547s 3058 Save Response

Pretty Raw Preview Visualize JSON ~ = mQ

i [
"product_ID": 4,

“: "Samsung M30“,

"product_Description®: "It is a handy smartphone”,

“product_Na

‘product_Price": 38,
"product_Quantity®: 16,
"categoxry_Name": “"smartphone”

ST O

Figure 8-16. Response from CreateProduct function

Similarly, to send a request to the UpdateProduct function, create a new request in
the requests collection. Set the request method as PUT and paste the URL endpoint
of the function there by copying it from Azure Functions Core Tools. Go to the tabs and
define the request payload by mentioning all the product information in key-value
pairs, as shown in Figure 8-17. Once you configure all these options, click Send to send
arequest to your UpdateProduct function, which will use the request payload to update
the records of the product in the ProductInformation table.

Note To call these functions using their endpoints from an application, you will
have to enable CORS and define your application’s domain name and ports. This is
to let the function know that it is OK to get requests from your application. You can
configure CORS for your function project by specifying the CORS property of Host
in local.settings.json, as shown in Listing 8-10. We have defined the value
of the CORS property with a wildcard (*), which tells the function project that it can

196

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

be called by any application irrespective of the domain it is run on. This is OK to
be used in a development environment, but you should define your application’s
URL here, which is going to make a call to your functions while deploying it in the

production environment.

Listing 8-10. Define the CORS Property in local.settings.json

{
"IsEncrypted": false,

"Values": {

"AzurelebJobsStorage": "UseDevelopmentStorage=true",

"FUNCTIONS WORKER RUNTIME": "dotnet",

"DBConnectionString": "[Enter your connection string here]"

1
IIHOStII: {"CORS": Il*ll}

}

ChOE | UpdateProduct [&) save
PUT - http:/flocalhest:7071/apifproduct
Params Authorization Headers (8) Body @ Pre-request Script Tests Settings
none form-data *-www-form-urlencoded @ raw binary GraphGQL Text ~
1
2 'Product_ID':1,

"Product_Name':'Hp OMEN',

4 ‘'Product_Description’:'It is one of the best gaming laptops',
"Product_Price’:148,

& ‘Product_Quantity':ie,
‘Category_Name':Laptop’

8

Body Cookies Headers (4) Test Resuits & 2000K Ga4s
Pretty Raw Preview Visualize JSON v =
2 “product_ID": 1,
3 "product_Name": “Hp OMEN",
4 “preduct_Description®: "It is one of the best gaming laptops”,
5 "product_P :
["product_Q 8,
7 "categoxy_Name ptop”
g

Figure 8-17. Response from the UpdateProduct function

Send “

Cookies

30E Save Response v

m Q

197

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Now let’s send a request to the DeleteProduct function and create a new request in
the request collection. Set the request method to DELETE and paste in the endpoint of
the DeleteProduct function. We need to specify the value of Product_ID in the function
route. Once you define the endpoint and request method, click Send to invoke the
DeleteProduct function. If the function runs without getting any exceptions, you should
get a 200 response code along with a message stating the product record was deleted
successfully in the response body, as shown in Figure 8-18.

ChOE | DeleteProduct &) Save ~ oee
DELETE ~ http:/flocalhost:7071/api/product/4
Params Authorization Headers (6) Body Pre-request Script Tests Settings Cookies
® none form-data x-www-form-urlencoded raw binary GraphQL
Body Cookies Headers (4) Test Results @ 2000 711ms 1838 SaveResponse v
Pretty Raw Preview Visualize Text ~ = mQ

1 Product record were deleted successfully

Figure 8-18. Response from the DeleteProduct function

Note You can write unit tests for your Azure functions using unit test frameworks
for C# like MSTest, NUnit, or XUnit. Refer to https://microsoft.github.io/
AzureTipsAndTricks/blog/tip196.html to learn more.

Similar to the DeleteProduct request, you don’t need to specify anything in the
request body of the request payload for the GetProductById function, but you do need
specify the Product_ID in the function route as you did in the case of the DeleteProduct
request. Let’s create a request in the request collection for GetProductById. Specify the
request method type for this request as GET and define the function route along with
the Product_ID. Once you define the request method and function route, click Send to

198

https://microsoft.github.io/AzureTipsAndTricks/blog/tip196.html
https://microsoft.github.io/AzureTipsAndTricks/blog/tip196.html

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

invoke the GetProductById function. If your function works well without any exceptions,
you should receive a 200 response code and the product details in the response body, as

shown in Figure 8-19.

Ch0& | GetProductByld [B) Save
GET w http:/flocalhost:7071/apifproduct/2 Send b
Params Authorization Headers (6) Body Pre-request Script Tests Settings Cookies
® none form-data x-www-form-urlencoded raw binary GraphQL
Body Cookies Headers (4) Test Results @ 2000« 444s 3108 SaveResponse ~
Pretty Raw Preview Visualize JSON v = m Q
1 [1
2 1
3 "product_ID": 2,
4 “product_Name": "Dell Inspiron”,
5 “product_Description®: "It is one of the best laptops”,
[“product_Price": 160,
7 “product_Quantity": 5,
8 “category_Name”: “"Laptop”
9
10 1

Figure 8-19. Response from the GetProductByld function

Let’s create the request in the request collection for sending a request to the
GetProducts function. Unlike the previous functions, GetProducts does not take any
value in the request body or in the function route. We need to set the request method
type as GET and then paste the endpoint of the GetProducts function. Now click Send
to invoke the GetProducts function. We will get a response code of 200 and all the
records present in the ProductInformation table in the response body if your function is
executed without getting any exception, as shown in Figure 8-20.

199

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Cho8 | GetProduct [E) save v
GET http://localhost:7071/apifproduct Send w
Params Authorization Headers (6) Body Pre-request Script Tests Settings Cookies
@ none form-data x-www-form-urlencoded raw binary GraphQL
Body Cookies Headers (4) TestResults @ 2000k 227s 6448 SaveResponse v
Pretty Raw Preview Visualize JSON -~ = m Q
1

Y- T« TR« R TR S T T

S @

L e
B W Nk

B
N o b

s
5

“product_ID": 1,

“product_Name": "HP Omen®”,

“product_Description™: "It is one of the best gaming laptops”,
“product_Price”: 16@,

"product_Quantity": 6,

“categoxry_Name": “"Laptop”

“product_ID": 2,

"product_Name": "Dell Inspiron”,

“product_Description™: "It is one of the best laptops”,
“product_Price": 100,

“product_Quantity": 5,

"categoxry_Name": “"Laptop”

Figure 8-20. Response from the GetProducts function

Note

As you are using your Azure SQL Database instance to be on a serverless
tier, you can get an exception while creating the first connection in your function
due to the cold-start issue. This can also occur if your database was idle for a long
time. However, this will be the case only for the first time you create a connection
to interact with the database after it’s been a long time.

Asyou test all your serverless APIs’ functionality in Postman, you have completed

your proof of concept successfully and share it with your manager.

200

CHAPTER 8 BUILDING SERVERLESS APIS USING AZURE FUNCTIONS AND AZURE SQL

Summary

In this chapter, you learned how to create serverless APIs with the help of HTTP-
triggered Azure functions using Visual Studio 2019 by building a proof of concept to
solve a use case. You developed multiple serverless APIs to perform create, read, update,
and delete operations. While building the proof of concept, you learned ways to interact
with an instance of Azure SQL Database from your function and learned how to test your
HTTP-triggered functions using Postman.

The following are the key takeaways from this chapter:

e Azure SQL Database is a fully managed platform-as-a-service
database engine.

o Azure SQL Database can be highly scalable and cost effective while

running on a serverless compute tier.
e You can create serverless APIs using HTTP-triggered functions.

¢ You can customize the HTTP-triggered function to run on receiving
requests from specific request methods.

e You can interact with an instance of Azure SQL Database from your
Azure functions using ADO.NET or ORM frameworks like EF Core.

201

CHAPTER 9

Serverless APl Using
Azure Functions and
Azure Cosmos DB

Azure Cosmos DB is a popular NoSQL database and is widely used in all new-generation
applications. It is highly available, it scales rapidly, and the data stored can be globally
distributed. You may have scenarios where an Azure function has to work on data stored
in Azure Cosmos DB. You can achieve this functionality using the Azure Cosmos DB
input and output bindings.

In the previous chapter, you learned all the essential concepts of the Azure SQL
Database binding. You built serverless APIs using the Azure Functions binding for
Azure SQL Database. In this chapter, you will explore how to implement serverless APIs
using Azure Functions and Azure Cosmos DB. You will use both the Azure Cosmos DB
function binding and the Azure Cosmos DB SDK approach.

Structure of the Chapter

In this chapter, you will explore the following aspects of Azure Cosmos DB and Azure

Functions:
¢ Introduction to Azure Cosmos DB and its use cases

o Getting started with the Azure Functions Cosmos DB trigger by
building a simple application

203
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_9

https://doi.org/10.1007/978-1-4842-7122-3_9#DOI

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

o Building an HTTP-triggered Azure function to perform CRUD
operations in Azure Cosmos DB using bindings

o Leveraging the Azure Cosmos DB SDK to interact with Cosmos DB

from Azure Functions

Objectives

After studying this chapter, you will be able to do the following:

o Implement Azure Cosmos DB triggers and bindings for Azure
Functions

e Use the Azure Cosmos DB SDK with Azure Functions

Introduction to Azure Cosmos DB and Its Use Cases

Modern applications require databases to be constantly available, be scalable, have low
latency, and be highly responsive. Azure Cosmos DB addresses all these concerns and
is a perfect fit for all modern application scenarios. Azure Cosmos DB ensures business
continuity with SLA-backed availability and offers security at an enterprise level. It
supports replication across the globe in no time and is the best fit for mission-critical
applications that always need to be available and responsive to their users.

Azure Cosmos DB is a multimodel NoSQL database and supports the following data
models:

e Key-value

e Column-family
¢ Document

e Graph

Table 9-1 lists the APIs that can be used to work with data stored in these data
models.

204

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Table 9-1. Azure Cosmos DB Data Models

and Supported APIs

Data Model API
Key-value Table API
Column-family Casandra
Document SQL
Graph Gremlin

Azure Cosmos DB is a fully managed offering from Azure, and you do not need
to worry about managing the underlying infrastructure hosting these databases. Any
application such as web, mobile, gaming, or IoT-based applications with the following
requirements can use Azure Cosmos DB as the data store:

e Massive amount of reads and writes at a global scale
o Near real-time data consistency

e Global replication

e Guaranteed high availability

o High throughput

o Lowlatency

Azure functions can interact with Azure Cosmos DB using triggers and bindings.
You do not need to write much code or write declarative configurations to use Azure
Cosmos DB.

Note Azure Cosmos DB is a highly available and multimodel database engine. It
supports the MongoDB, Gremlin, SQL Core, and Casandra APIs. It can scale rapidly
and replicate data around the world quickly.

205

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Getting Started with Azure Function Cosmos DB
Triggers by Building a Simple Application
Now let’s implement an Azure function that gets triggered whenever you add an item in

your Cosmos DB database. Let’s first provision a Cosmos DB resource using the Azure
portal. Go to the Azure portal and click “Create a resource.” See Figure 9-1.

Azure services

+1] ®@ o
—

Create a Resource Azure Active

resource groups Directory

Figure 9-1. Click “Create a resource”

Click the Databases tab. All the database offerings will be listed here. Click Azure
Cosmos DB. See Figure 9-2.

New

£ Search the Marketplace

Azure Marketplace Seeall Featured Seeall

Get started Azure SQL Managed Instance
[Quickstarts + tutorials
—-—

Recently created

SQL Database
Quickstarts + tutorials

Al + Machine Learning

Analytics

Blockchain Azure Cosmos DB

e
Compute g Quickstarts + tutorials

Containers

Azure Database for PostgreSQL
T

IDatabases I Quickstarts + tutorials

Figure 9-2. Click Azure Cosmos DB

206

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Provide the subscription where you need to create the Cosmos DB resource, the

name of the Cosmos DB account, and the location. Provide Core (SQL) as the API. Click

“Review + create.” See Figure 9-3.

Home > New >

Project Details

Subscription *

Resource Group *

Instance Details

Account Name *
APl * (O
Location *

Capacity mode @

Review + create |

Create Azure Cosmos DB Account

0 For a limited time, create a new Azure Cosmos DB account with multi-region

Select the subscription to manage deployed resources and costs. Use resour

‘ rg-book

Create new

‘ cosmosdbfuncdemo

[Core (SQL)

| (US) East US

I Provisioned throughput JRYER)

Previous [Next: Networking ‘

Figure 9-3. Click “Review + create”

Click Create. This action will spin up the Azure Cosmos DB resource. See Figure 9-4.

207

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Create Azure Cosmos DB Account

o Validation Success

Basics Networking Backup Policy Encryption Tags Review + create

Creation Time

Estimated Account Creation Time (in 13
minutes)

@ The estimated creation time is calculated 4

Basics

Subscription Visual Studio Enterprise
Resource Group rg-book

Location East US

Account Name (new) cosmosdbfuncdemo

Coeete | Nexi e

Figure 9-4. Click Create

Once the Azure Cosmos DB resource gets created, click “Go to resource.” See
Figure 9-5.

208

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Delete () Cancel [T Redeploy () Refresh

o We'd love your feedback! —

@ Your deployment is complete

- Deployment name: Microsoft.Azure.CosmosDB-2021
Subscription: Visual Studio Enterprise
Resource group: rg-book

v Deployment details (Download)

~ Next steps

Go to resource

Figure 9-5. Click “Go to resource”

You will be navigated to the Azure Cosmos DB resource that you created. On the
Overview tab, click + Add Container. See Figure 9-6.

< cosmosdbfuncdemo =

Azure Cosmos DB account

‘,0 Search (Ctrl+/) ‘ « -+ Add Container

£ OQverview

0 Welcome to yo

more.
B Activity log
fa Access control (IAM)
¢ Tags 0 Announcing Azure
Z? Diagnose and solve problems
 Essentials
& Quick start
Status
* Notifications Online

Figure 9-6. Click + Add Container

209

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

You will be navigated to the Data Explorer tab. Click New Container. See Figure 9-7.

&5 cosmosdbfuncdemo | Data Explorer

Azure Cosmos DB account

|/O Search (Ctrl+/) ‘ « lﬁ New Container -
T Overview .
SQL API O <

Activity log

¥ DATA
fa Access control (IAM)

¥ NOTEBOOKS
@ Tags CH Gallery
&2 Diagnose and solve problems ¥ My Notebooks
&3 Quick start

Notifications

@ Data Explorer

Figure 9-7. Click New Container

Provide the database ID and scroll down. See Figure 9-8.

210

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Add Container

With free tier, you'll get the first 400 RU/s and 5 GB of
storage in this account for free. Billing will apply if you
provision more than 400 RU/s of manual throughput, or if
the container scales beyond 400 RU/s with autoscale.
Learn more

* Database id ® =

® Create new Use existing

I sampledb|
Provision database throughput ©

* Throughput (400 - 100,000 RU/s) @
Autoscale ‘@ Manual

Estimate your required throughput with capacity calculator -

Figure 9-8. Provide the database ID

Provide the container ID and scroll down. See Figure 9-9.

211

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Add Container

o With free tier, you'll get the first 400 RU/s and 5 GB of
storage in this account for free. Billing will apply if you
provision more than 400 RU/s of manual throughput, or if
the container scales beyond 400 RU/s with autoscale.
Learn more

* Container id @ -

samplecontaineri

* Indexing

® Automatic Off

All properties in your documents will be indexed by default for
flexible and efficient queries. Learn more

OK

Figure 9-9. Provide the container ID

Provide the partition key and click OK. The container will get created. You will add
an item to the container later once the Azure function is ready. See Figure 9-10.

212

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Add Container

o With free tier, you'll get the first 400 RU/s and 5 GB of

storage in this account for free. Billing will apply if you
provision mare than 400 RU/s of manual throughput, or if

the container scales beyond 400 RU/s with autoscale.

_ngrn more

M M 1 J Al St h Al Fh BTN e 11 N R p M s Bn

flexible and efficient queries. Learn more

* Partition key ©

/samplepartitionkey|

My partition key is larger than 100 bytes

* Analytical store @

On Off

Figure 9-10. Provide the partition key

Now let’s build the Azure function that gets triggered whenever you add an item
in the Cosmos DB instance. Open Visual Studio and click “Create a new project.”

See Figure 9-11.

213

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

+
h S Clone or check out code

Get code from an online repository like GitHub
or Azure DevOps

"@ Open a project or solution

Open a local Visual Studio project or .sin file

-, Open a local folder

Navigate and edit cade within any folder

"'@ Create a new project

Choose a project template with code scaffolding
to get started

Continue without code -

Figure 9-11. Click “Create a new project”

Select Azure Functions and click Next. See Figure 9-12.

214

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Cc#

- All platforms - Cloud

ASP.NET Core Web Application

Project templates for creating ASP.NET Core web apps and web APIs for Windows,
Linux and macOS using .NET Core or .NET Framework. Create web apps with Razor
Pages, MVC, or Single Page Apps (SPA) using Angular, React, or React + Redux.

C# Linux macO5 Windows Cloud Service Web

Blazor App

Project templates for creating Blazor apps that that run on the server in an ASP.NET
Core app or in the browser on WebAssembly. These templates can be used to build
web apps with rich dynamic user interfaces (Uls).

c# Linux macOs Windows Cloud Web

<P

Azure Functions

A template to create an Azure Function project.

C# Azure Cloud

gRPC

gRPC Service
A project template for creating a gRPC ASP.NET Core service using .NET Core.
Ci Linux macQs Windows Cloud Service Web
Worker Service
Back Next

Figure 9-12. Click Next

Provide the name of the function and click Create. See Figure 9-13.

215

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Configure your new project

Azure Functions ¢* Azwe Cloud

Project name

Lecation

ChUsers\Abhishek Mishra\source\repos

Solution name

FuncCosmaosDB

|| Place solution and project in the same directory

Back Create
|

Figure 9-13. Provide the project details

Select Cosmos DB Trigger. Provide the name of the connection string that you will
add in the local.settings.json file. Provide the database ID and container ID values
for the Cosmos DB instance that you created earlier for the database name and container
name, respectively. Click Create. See Figure 9-14. The Azure function solution will be
created.

216

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Create a new Azure Functions Application

Azure Functions v3 (.NET Core) -

T Emey
h - Storage Account (AzureWeblobsStorage)
Creates an Azure Function project with no triggers. Function triggers can be added during I
development. iSrurage Ernulator -
o Blob trigger 1. Some capabilities may require an Azure storage account.
Connection string setting name
A C#f function that will be run whenever a blob is added to a specified container.
cosmosDbConn
E Cosmos DB Trigger
Database name
A function that wil N WHE ver aocouments cn. e ocu collection
sampledb
Event Grid trigger

Collection name

A C# function that will be run whenever an event grid receives a new event
samplecontaine

Event Hub trigger

A CH function that will be run whenever an event hub receives a new event

Http trigger

A C# function that will be run whenever it receives an HTTP request =

Get started with Azure Functions

B

Figure 9-14. Select the Cosmos DB trigger

Go to the local.settings. json file and add the connection string, as shown in
Listing 9-1. You need to provide the connection string’s name the same way you did
while creating the Azure function solution in Visual Studio.

Listing 9-1. local.settings.json Code

{
"IsEncrypted": false,

"Values": {

"AzurelebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER RUNTIME": "dotnet",

"cosmosDbConn™: "[Connection String Value from Azure portal]”

217

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Navigate to the Keys tab of Cosmos DB in the Azure portal and copy the connection
string’s value. Provide the value of the connection string in the local.settings.json
file. See Figure 9-15.

Home > Microsoft. Azure.CosmosDB-20210325234424 > cosmosdbfuncdemo

cosmosdbfuncdemo | Keys

Azure Cosmos DB account

[2 Search (Ctrl+/) «

@ .
Backup & Restore Read-write Keys Read-only Keys

‘g Firewall and virtual networks

URI
<k> Private Endpoint Connections https://cosmosdbfuncdemo.documen
© CORS PRIMARY KEY
1xjjM3AJOYR7AHMoZmhvZggShOY7L
3 Add Azure Cognitive Search SECOMDARY KEY
» Add Azure Function 3GstoE4WZaKAhdr9bOgb4wHk4mg
© Advanced security (preview) PRIMARY CONNECTION STRING
) AccountEndpoint=https:/fcosmosdb1.l
5 Locks
SECOMDARY COMMECTION STRING
Containers AccountEndpoint=https://cosmosdbfu

Figure 9-15. Connection string value for Cosmos DB

Go to Functioni.cs and replace the contents with the code shown in Listing 9-2.
The Run method’s input parameter will capture the details of the items that either got
added to or got modified in Azure Cosmos DB and triggered the Azure function. You add
code to log the document ID and the JSON document for the item that you will add in
Cosmos DB.

Listing 9-2. Functionl.cs Code

using System;

using System.Collections.Generic;
using Microsoft.Azure.Documents;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Microsoft.Extensions.Logging;

218

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

namespace FuncCosmosDB

{

public static class Functioni

{
[FunctionName("Functioni")]
public static void Run([CosmosDBTrigger(
databaseName: "sampledb",
collectionName: "samplecontainer",
ConnectionStringSetting = "cosmosDbConn",
LeaseCollectionName = "leases",

CreateleaseCollectionIfNotExists = true)]
IReadOnlyList<Document> input, ILogger log)
{
if (input != null && input.Count > 0)
{
log.LogInformation("Documents modified " + input.Count);
log.LogInformation("First document Id " + input[0].Id);
log.LogInformation("Document " + input[0].ToString());

Note You need to provide a lease name for the trigger. Multiple Azure functions
can get triggered by the Cosmos DB trigger. The lease for a trigger makes the
invocation unique per function.

Now run the Azure function and navigate back to the Cosmos DB instance in the
Azure portal. Go to the Data Explorer, expand the container that you created, and click
Items. See Figure 9-16.

219

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

S5 cosmosdbfuncdemo | Data Explorer
Azure Cosmos DB account
_.)3 Search (Ctrl+/) ‘ « . ‘ ® ‘ =14
€ Overview :)
SQL API A

Activity lo

= ylog ¥ DATA

f’h Access control (IAM) v '® sampledb

€ Tags Scale

£2 Diagnose and solve problems g leases

& OQuick b samplecontainer
Notifications Settings

@ Data Explorer } Stored Procedures

Figure 9-16. Go to the Data Explorer

Click New Item. See Figure 9-17.

G- ® . Fle OBR ¢ ‘ B 3+ % ‘I 0 Newlteml

SQL API O s

¥ DATA
. SELECT * FROM ¢ Edit Filter

¥ & sampledb

Scale id /s... (&)
4 leases
i samplecontainer Laad mare
Items
Settings

» Stored Procedures

¥ User Defined Functions

¥ Trinaers

Figure 9-17. Click New Item

Provide the JSON document for the item and click Save. See Figure 9-18.

220

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

C3~ x;ﬂ v ’ D New Item save|) Discard

114

2 My e

3 "samplepartitionkey":"Partitionl”,
4 "key":"test key",

5 "value" : “testvaluer

6 |}

Figure 9-18. Add an item

Your Azure function gets triggered. You can see that the document ID and the

document JSON get printed in the debug console. See Figure 9-19.

B C:\Users\Abhishek Mishra\AppData\Local\AzureFunctionsTools\Releases\3.23.00cli_x64\func.exe

Function Runtime Version: 3.0.15371.@

[2021-83-25T20:11:28.287Z] Found

Functions:

Functionl: cosmosDBTrigger

For deta

ed output, run func with -
[2021-03-25T20:11:56.6497] Host 3
[2821-83-25T20:

-ve

0. 240¢ LI O
[2021-83-25T20:
[2021-83-25T720: 4
[2021-03-25T20:12:16.4132] Dc
[2021-83-25T20:12:10.4192]
[2021-03-25T720:12:10.42617]
[2021-83-25T20:12:10.435Z]
[2021-03-25T20:12:10.4447]

[2021-03-25T20:12:10.4517]
[2021-83-25T20:12:16.4567]
[2021-03-25720:12:10.4662]
20821-03-25720:12:10.4752]
[2021-03-25T20:12:10.4812]
[2021-83-25T20:12:16.4877]
{2021-03-25T20:12:10.4972] }

2821-83-25T20:12:108.5772] Executed 'Functionl' (Succeeded, Id=4c6132a9-

“ore Tools Version: 3.0.3388 Commit hash: fb42adedb7fdc85fbd@bcfc8d743FF7d56)

e35d-45dd

Figure 9-19. Function execution output

221

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Build an HTTP-Triggered Azure Function to
Perform CRUD Operations on Azure Cosmos DB
Using Bindings

Now let’s build an Azure function that gets invoked using an HTTP trigger, reads items
from the Cosmos DB instance using an input binding, processes these items, and writes
the processed items back to the Cosmos DB instance using an output binding.

Let’s create a new Azure function in the same project in Visual Studio. Right-click the
project, click Add, and then click New Azure Function. See Figure 9-20.

?
Wo- o-Sa@ f-=

Search Solution Explorer (Ctrl+;)

31 Solution "FuncCasmosDB' (1 of 1 project)

4 [¢#] FuncCosmosDB Y

P &' Dependencies =
O gitignore Rebuild
b €* Functionl.cs Clean
£T hostjson Analyze and Code Cleanup g
£T local settings jso Pack
@& Publish...

Scope to This
B New Solution Explorer View
(4

Edit Project File
I New Azure Functir)n.l »
0 Newltem... Ctrl+Shift+ A ﬂ Manage NuGet Packages...
O Existing Item... Shift+Alt+A Manage User Secrets

Figure 9-20. Add a new function

Provide the name of the Azure function as Function2.cs and click Create. Then
you will get the screen shown in Figure 9-21. Select “Http trigger” and click OK. See
Figure 9-21.

222

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

i i Authorization level
@ Service Bus Queue trigger = uthonzation leve

Anonymaous 7

F= Http trigger

Enable Open Api Support
@ Timer trigger :‘ p pi Supp

= Queue trigger

D Blah trigger

i Event Grid wigger

@ Event Hub trigger

@ loT Hub trigger

@ Service Bus Topic trigger
Durable Functions Orchestration
E Cosmos DB Trigger

SendGrid

SignalR

OK Cancel

Figure 9-21. Select “Http trigger”

As a prerequisite, add some items in Cosmos DB in the same container that you
created earlier. Let’s go to the Function2.cs code and use the code shown in Listing 9-3.
You add a class called SampleData that represents the items stored in Cosmos DB. The
item’s input parameter for the Run method is decorated with the CosmosDB attribute.
This attribute takes the database name, container name, and search query. The items
returned by the query get populated in the items parameter. You can populate new data
of type SampleData in the outputItems input parameter for the Run method, and those
items get added to the Cosmos DB instance. You invoke this function using the HTTP
trigger and pass the key as the route parameter. All the items that have keys, the same
as that you are passing as a route parameter, will be retrieved. You then iterate through
each of these items, process them, and add a new processed item in the Cosmos DB
instance.

Listing 9-3. Function2.cs Code

using System.Collections.Generic;
using System.IO;

using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

223

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace FuncCosmosDB

{

public static class Function2

{

[FunctionName("Function2")]
public static async Task<IActionResult> Run(

[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",

Route = "search/{key}")] HttpRequest req,
[CosmosDB(

databaseName: "sampledb",

collectionName: "samplecontainer”,

ConnectionStringSetting = "cosmosDbConn",

SqlQuery = "SELECT * FROM c where c.key={key} order by

c.id")]IEnumerable<SampleData> items,
[CosmosDB(

databaseName: "sampledb",

collectionName: "samplecontainer",

ConnectionStringSetting =

"cosmosDbConn")]IAsyncCollector<SampleData> outputItems,

ILogger log)

log.LogInformation("C# HTTP trigger function processed a

request.");
// Read and process each item
foreach (SampleData item in items)

{

log.LogInformation("Processing {0}-{1}-{2}-{3}",item.Id,

item.PartitionKey, item.Key,item.Value);
//Process the item

string newId = item.Id + " - Processed";

224

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

SampleData data = new SampleData() { Id = newId, PartitionKey =
item.PartitionKey, Key = item.Key, Value = item.Value };
//Insert a the processed Item as a new Item in the

//Azure Cosmos DB

await outputItems.AddAsync(data);

}

// Write the processed item to the database
return new OkResult();

}

}

public class SampleData

{
[IsonProperty("id")]
public string Id { get; set; }
[IsonProperty("samplepartitionkey")]
public string PartitionKey { get; set; }
[JsonProperty("key")]
public string Key { get; set; }
[JsonProperty("value")]
public string Value { get; set; }

}

Execute the Azure function solution and trigger the Azure function using the
following link:

http://localhost:7071/api/search/city

All the items with keys as the city will get retrieved, processed, and added back to the

Cosmos DB instance. See Figure 9-22.

225

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Items
SELECT * FROM ¢ Edit Filter
id /sampleparti... O
01 Partition1
02 Partition1
04 Partition1
03 Partition1
01 - Processed Partition1
02 - Processed Partition1
Load more

Figure 9-22. Processed items in Cosmos DB

Leverage the Azure Cosmos DB SDK to Interact
with Cosmos DB from Azure Functions

You can create stored procedures, user-defined functions, and database triggers in
Azure Cosmos DB. Triggers and bindings are excellent mechanisms to interact with
Azure Cosmos DB data. However, they do not support invoking Azure Cosmos DB stored
procedures, user-defined functions, and database triggers. You need to use the Azure
Cosmos DB SDK to achieve this functionality. You can use the Azure Cosmos DB SDK to
perform all the CRUD operations for the Azure Cosmos DB instance.

Let’s create a stored procedure for the container that you created earlier and call
that stored procedure from the Azure function. Go to the Data Explorer tab for the Azure
function in the Azure portal. Hover your mouse over the container you created and click
the three dots (...). See Figure 9-23.

226

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

D cosmosdbfuncdemo | Data Explorer
Azure Cosmos DB account
[/O Search (Ctrl+/)] « 3 New Container g
€ Overview . @
SQL API =
B Activity lo
s ¥ DATA
Ao Access control (IAM) v » sampledb
€ Tags Scale
¢? Diagnose and solve problems i lenses
i samplecontaine
&4 Quick start [3
Iltermns
Notifications Settings
@ Data Explorer » Stored Procedures
» User Defined Functions

Figure 9-23. Click the three dots

Click New Stored Procedure. See Figure 9-24.

SQL API O <

v DATA \/

v # sampledb
Scale

» leases

ot |i samplecontainer

@ New 5QL Query
Items

Settings Igﬁ New Stored Procedure

» Stored Procedure f%, New UDF

> User Defined Fun
. New Trigger
» Triggers

Figure 9-24. Click New Stored Procedure

227

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

The default stored procedure is generated. Listing 9-4 shows the code for the default
stored procedure. You can search the items using the partition key and return the first
item from the search result using this stored procedure.

Listing 9-4. Generated Stored Procedure in the Azure Portal

// SAMPLE STORED PROCEDURE
function sample(prefix) {
var collection = getContext().getCollection();

// Query documents and take 1st item.

var isAccepted = collection.queryDocuments(
collection.getSelfLink(),
"SELECT * FROM root r',

function (err, feed, options) {
if (err) throw err;

// Check the feed and if empty, set the body to 'no docs found',
// else take 1st element from feed
if (!feed || !feed.length) {
var response = getContext().getResponse();
response.setBody('no docs found');

}

else {
var response = getContext().getResponse();
var body = { prefix: prefix, feed: feed[0] };
response.setBody(JSON.stringify(body));

}

};

if (!isAccepted) throw new Error('The query was not accepted by the
server.');

Provide a name for the stored procedure and click Save. See Figure 9-25.

228

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

0 < E‘ E3 i_f v ‘IE] Savel “) Discard [:f> Execute

Mew Stored Pro...

Stored Procedure Id

. sp_ReadSampleContainer

Stored Procedure Body

1 // SAMPLE STORED PROCEDURE
function sample(prefix) {
var collection = getContext().getCollection();

2
3
4
5 // Query documents and take 1st item.
6 var isAccepted = collection.queryDocuments(
7 collection.getSelfLink(),
8 '"SELECT * FROM root r',
9 function (err, feed, options) {
e

1 if (err) throw err;

Figure 9-25. Save the stored procedure

Now let’s go to the Visual Studio Azure functions project that you created earlier
and add a new HTTP-triggered function named Function3. Add the NuGet package
Microsoft.Azure.Cosmos to the project. Put the code shown in Listing 9-5 in
Function3.cs. The ExecuteStoredProcedureAsync method invokes the stored
procedure and gets the stored procedure output.

Listing 9-5. Function3.cs Code

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.Cosmos;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Llogging;

using Newtonsoft.Json;

namespace FuncCosmosDB

{

public static class Function3

{

229

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

[FunctionName("Function3")]

public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Function, "get", "post", Route =
null)] HttpRequest req,
ILogger log)

{
log.LogInformation("C# HTTP trigger function processed a
request.");
string _endpointUri = "Endpoint URI from Azure Portal";
string primaryKey = "Primary Key from Azure Portal";
// Create Cosmos DB Client
CosmosClient client = new CosmosClient(_endpointUri,
_primaryKey);
// Execute Stored Procedure. Pass the Partition Key value
that you
// need to query
var result = await client.GetContainer("sampledb"”,
"samplecontainer™").Scripts
.ExecuteStoredProcedureAsync<string>
("sp_ReadSampleContainer"”,
new PartitionKey("Partitioni"),null);
// Print the item returned by the Stored Procedure
log.LogInformation("Returned Result : {0}",result.Resource);
return new OkObjectResult("Success");
}

You can get the primary key and endpoint URI value from the Keys tab in the Cosmos
DB instance in the Azure portal. See Figure 9-26.

230

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

Home > cosmosdbfuncdemo

cosmosdbfuncdemo | Keys

Azure Cosmos DB account

2 Search (Ctrl+/) l «

& Backup & Restore -
_ Read-write Keys ~ Read-only Keys
@ Firewall and virtual networks —_——

JRI
¢l> Private Endpoint C ti
“» Frvate Endpoint Lonnections https://cosmosdbfuncdemo.docume}
%) CORS
PRIMARY KEY

Keys | 1xjM3AjfOYR7AHMOZmhvZggshov
“3 Add Azure Cognitive Search SECONDARY KEY
“> Add Azure Function [3GsGfoE4W2aKAhdrabOgbdvvHkdmg
© Advanced security (preview) PRIMARY CONNECTION STRING
8 Locks lAccountEndpoint=https://cosmosdbf

SECONDARY CONNECTION STRING
[AccountEndpoint=https://cosmosdbf

Containers

Figure 9-26. Get the primary key and URI for the Cosmos DB instance

When you execute the Azure function and invoke the function URL, the stored
procedure result will get logged in the debug console.

Summary

In this chapter, you learned how to work with Cosmos DB triggers and Cosmos DB input
and output bindings using Visual Studio. You developed Azure functions to perform
CRUD operations using Azure Cosmos DB input and output bindings and the Azure
Cosmos DB SDK. You can pass the date, time, and activity you are planning to do during
that time.

The following are the key takeaways from this chapter:

e Azure Cosmos DB is a highly available multimodel database. It
supports SQL Core, Gremlin, Mongo DB, and Casandra APIs.

e Azure Cosmos DB can scale rapidly and can replicate data across the
globe quickly.

231

CHAPTER9 SERVERLESS API USING AZURE FUNCTIONS AND AZURE COSMOS DB

232

You can trigger an Azure function using an Azure Cosmos DB trigger.

You can add items to the Azure Cosmos DB instance using a Cosmos
DB output binding.

You can read items from Azure Cosmos DB using a Cosmos DB input
binding.

You can declaratively configure a CosmosDB trigger and binding
without having to write much code.

Visual Studio provides a template to work with Cosmos DB trigger.

You can use the Azure Cosmos DB SDK in the Azure function to
perform CRUD operations and invoke stored procedures, user-
defined functions, and database triggers.

CHAPTER 10

Enabling Application
Insights and Azure
Monitor

Once you have developed your Azure function and have deployed it to the production
environment, you must ensure that it is always ready to wake up if triggered and is doing
its job as expected. In fact, you need to keep tabs on any failures and get alerts whenever
the function goes down. You should have enough logs and metrics to debug issues and
unexpected behavior for Azure functions in a production environment. Monitoring helps
you to observe the execution behavior of an Azure function, and logs will provide you
with the proper context in which you can debug Azure function failures and exceptions.

In the previous chapter, you learned how to perform CRUD operations on Azure
Cosmos DB instances from Azure Functions. You explored the Azure Cosmos DB input
and output bindings and the Azure Cosmos DB SDK in the context of Azure Functions.
In this chapter, you'll explore how to use Application Insights and Azure Monitor with
Azure Functions to gather logs and metrics.

Structure of the Chapter

In this chapter, you will explore the following aspects of Application Insights and Azure
Monitor and Azure Functions:

» Enabling logging using Application Insights
o Performing diagnostics for Azure Functions
e Monitoring functions and creating alerts

e Restricting the number of scaling instances for a function app

233
© Ashirwad Satapathi and Abhishek Mishra 2021

A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_10

https://doi.org/10.1007/978-1-4842-7122-3_10#DOI

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Objectives

After studying this chapter, you will be able to do the following:
o Implement Application Insights for Azure Functions

e Use Azure Monitor for Azure Functions

Enable Logging Using Application Insights

Azure Functions provides excellent support for logging using Applications Insights. Let’s
create an Azure function with Application Insights enabled using the Azure portal. Then
you can modify the function code to log some information, errors, and traces for the
Azure function. Open the Azure portal and click “Create a new resource.” See Figure 10-1.

Azure services

=|= (%) 3

Create a Resource Azure Active
resource groups Directory

Figure 10-1. Click “Create a resource”

Click Compute and then click Function App. See Figure 10-2.

234

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Azure Marketplace Seeall Featured Seeall

Get started ‘ Virtual machine
Learn more

Recently created

Al + Machine Learning Virtual machine scalg
i Learn more
Analytics
Blockchain Kubernetes Service
I Compute I Quickstarts + tutorials
Containers)
Function App
Databases <’> Quickstarts + tutorials

Figure 10-2. Click Function App

Provide the basic details for the function. Let’s select .NET and 3.1 as the runtime
stack and the version. Click the Monitoring tab to enable Application Insights for the
Azure function app. See Figure 10-3.

235

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Basics Hosting | Monitoring Tags Review + create

Create a function app, which lets you group functions as a logical unit for eas
resources. Functions lets you execute your code in a serverless environment W}
a web application.

Project Details

Select a subscription to manage deployed resources and costs. Use resource
all your resources.

Subscription * @]
Resource Group * © | rg-book
Create new

Instance Details

Function App name * funcloggingdemo

Publish * (®) Code O Docker Containe
Runtime stack * l NET

Version * | 31

Region * Central US

< Previous [Next : Hosting >

Figure 10-3. Provide basic details for the Azure function

Click Yes to enable Application Insights and provide the name for the Application
Insights resource. You can also use an existing Application Insights resource. Click
“Review + create.” See Figure 10-4.

236

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Basics Hosting Monitoring Tags Review + create

Azure Monitor application insights is an Application Performance Management (APN

professionals. Enable it below to automatically monitor your application. It will dete

includes powerful analytics tools to help you diagnose issues and to understand wh
Learn more 3

Application Insights

Enable Application Insights * O No|(@®) Yes

Application Insights * l (New) funcloggingdemo (Central US)
Create new

Region Central US

< Previous | MNext : Tags >

Figure 10-4. Enable Application Insights

Click Create. See Figure 10-5.

237

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Basics Hosting Monitoring Tags Review + create

Summary

.~ Function App

by Microsoft
Details
Subscription I
Resource Group rg-book
Name funcloggingdemo
Runtime stack .NET 3.1
Hosting

Storage (MNew)

Storage account storageaccountrgboo8fa?
Plan (New)

Plan type Consumption (Serverless)
Name ASP-rgbook-9af1
Operatina System Windows

| < Previous Next > Download a t.

Figure 10-5. Click Create

Go to the Azure function app once it is created. Now you need to add a function to
the Azure function app. Click the Functions tab and click Add. See Figure 10-6.

238

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

£} funcloggingdemo | Functions

Function App

Iﬁ' Search (Ctrl+/) « () Refresh

-

“» QOverview

Activity log If—’ Filter by name..

Ao Access control (IAM)

P Name T
ags

) Mo results.
&P Diagnose and solve problems

Q Security

"~ Events (preview)

Functions

App keys

Figure 10-6. Add a function

Select “Http trigger” and click Add. See Figure 10-7.

239

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Add function

Select development environment

Instructions will vary based on your development environment. Learn more

Development environment | @ Develop in portal v

Select a template

Use a template to create a function. Triggers describe the type of events that
your functions. Learn more

S Filter

Template Description

HTTP trigger A function that will be run whenever it receives an
request, responding based on data in the body or
string

Timer trigger A function that will be run on a specified schedule

Azure Queue Storage trigger A function that will be run whenever a message is 4
to a specified Azure Storage queue

Azure Service Bus Queue A function that will be run whenever a message is 3

trigger to a specified Service Bus queue

Azure Service Bus Topic A function that will be run whenever a message is 3

trigger to the specified Service Bus topic

| Cancel [

Figure 10-7. Select “Http trigger”

Once the function is created, go into the function and click Code + Test.

See Figure 10-8.

240

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

HttpTrigger1 | Code

Function

£ Search (Ctrl+/) «
A} Overview

Developer
Integration
& Monitor

Function Keys

Figure 10-8. Click Code + Test

Replace the code in the run. csx file with the code in Listing 10-1 and save the
file. Here you are using the LogInformation method to log information, the LogError
method to log errors, the LogWarning method to log warnings, and the LogCritical
method to log critical errors.

Listing 10-1. Function Code with Logging Enabled
#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{
// Log Information

log.LogInformation("This is an Information.");

// Log Trace
log.LogError(new Exception(),"This is an Exception");

// Log Warning
log.LogWarning("This is a Warning");

241

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

// Log Critical Error
log.LogCritical("This is a Critical error");

return new OkObjectResult("Demo Complete !!");

Click “Get function URL” and browse to the URL in the browser. Now let’s go to
Application Insights and verify whether these logs were added. See Figure 10-9.

X I C Refresh O Test/Run ‘T‘ Upload IjE] Get function URLI
funcloggingdemo %\ HttpTrigger! \ | run.csx o
1 #r "Newtonsoft.Json"”
2
3 using System.Net;
4 using Microsoft.AspNetCore.Mvc;
5 using Microsoft.Extensions.Primitives;
6 using Newtonsoft.Jlson;
8 public static async Task<IActionResult> Run({HttpRequest req, ILogger log)
s {
19 //Log Information
11 log.LogInformation("This is an Information.");
12
13 //Log Trace
14 log.LogError(new Exception(),"This is an Exception");
15
16 //Log Warning
17 log.LogWarning("This is a Warning");
18
19 //Log Critical Error
29 log.LogCritical("This is-a Critical error"};
21
22 return new OkObjectResult("Demo Complete !!"};
23}

Figure 10-9. Get the function URL

Go back to the Azure function app and click the Application Insights tab. Click the
Application Insights resource name that you are using for this function app. You will be
navigated to the Application Insights resource. See Figure 10-10.

242

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Home > funcloggingdemo

@ funcloggingdemo |

Function App

2 Search (Ctrl+/)

Settings
!I' Configuration

|9

Authentication

Authentication (classic)

Application Insights I

Identity
Backups
Custom domains
TLS/SSL settings

Networking

Application Insights

View Application Insights data @

Application Insights

Collect application monitoring data using Application Insights
M Disable 0] " Feedback

Link to an Application Insights resource

o Your app is connected to Application Insights resourceffuncloggingdemo

~ Change your resource

Figure 10-10. Go to the Application Insights resource

Click the “Transaction search” tab and then click View in Logs. This action will

generate a query using the Kust

o Query Language (KQL) to get the logs you have pushed

to Application Insights. See Figure 10-11.

£ funcloggingdemo | Transaction search =

Application Insights

| 2 Search (Ctrl+/)

Q) Refresh 9

|<<

P Overview

Activity log

€ Tags

&P Diagnose and solv

Investigate
- Application map

a Smart Detection

4~ Live metrics

Ao Access control (JAM)

" Local Time: Last 24 hours J Event typ

Place search terms here, e.q. an Opers

e problems

- Transaction search

Figure 10-11. Click View in Logs

243

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Run the generated query, and you will see the logs that you pushed to Application
Insights in the result. See Figure 10-12.

Time range : Set in query B Save ~ |2 Share v
1 wunion isfuzzy=true availabilityResults, requests,
2 exceptions, pageViews, traces, customEvents, dependencies
3 | where timestamp > datetime("2021-84-82T16:17:27.429Z")
4 Iand timestamp < datetime("2021-84-83T16:17:27.4292")
5 | order by timestamp desc
6 | take 1ee
Results Chart 00 Columns ~ (O Display time (UTC+00:00)
Completed

message T,/ customDimensions

> Executed 'Functions.HttpTriggerl' ... {"prop_functionName":"Functions.HttpTrid
? This is an Exception {"LoglLevel":"Error","prop__{OriginalFerma
? This is a Warning {"LoglLevel":"Warning","prop__{OriginalFo
> This is a Critical error {"LogLevel":"Critical ","prop__{OriginalForn|
> Thisis an Information. {"LogLevel":"Information®,"prop__{Original

Figure 10-12. Run the query to get the logs

Perform Diagnostics for Azure Functions

The Azure portal provides a mechanism to auto-diagnose issues with Azure Functions.
If you see that an Azure function is not responding or working as expected, you can
diagnose the issue with ease and figure out what went wrong. Let’s introduce some
errors into the Azure function. Let’s use the same Azure function that you created earlier
for this demonstration. Modify the function code as shown in Listing 10-2. You are using
amethod called LogSuperCritical that should throw compilation errors.

Listing 10-2. Introduce a Compilation Error in the Function Code

#r "Newtonsoft.Json"
using System.Net;
using Microsoft.AspNetCore.Mvc;

244

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{
//Log Information

log.LogInformation("This is an Information.");

//Log Trace

log.LogError(new Exception(),"This is an Exception");

//Log Warning

log.LoghWarning("This is a Warning");

//Introducing Compilation Error

//There is no method as SuperCritical

//Should throw compilation error

log.LogSuperCritical("This is a Critical error")

return new OkObjectResult("Demo Complete !!");

Now let’s go to the function app’s Overview tab and stop the function app.

See Figure 10-13.

Function App
£ Search (Ctrl+/) &
> Qverview
Activity log
Access control (IAM)
Tags

Diagnose and solve problems

Q@ % ¢ Y o

Security

Events (preview)

«~ funcloggingdemo =

" Browse () Refresh

o Click here to access Application Ins|

 Essentials
Resource group (change) :
Status

Location
Subscription (change)

Subscription ID

: Running
: Central US
: Visual Stud

: a3759752

rg-book

Figure 10-13. Stop the Azure function app

245

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Browse to the function URL. You should get an internal 500 error or an equivalent
error. Now let’s diagnose these issues on the “Diagnose and solve problems” tab. You can
diagnose issues in the following categories:

e Availability and Performance

o Configuration and Management
e SSLand Domains

o Risk Assessment

Let’s search for Function App Down or Reporting Errors in the search box. See
Figure 10-14.

Home > funcloggingdemo
Vs funcloggingdemo | Diagnose and solve problems
Function App
‘,O Search (Ctrl+/) &« [Ask Genie (©) Feedback
> Overview -
Function App Diagnostics (Preview) - Investigate how your a
=] Activity log
A trol (IAM .
%1 ccess control (IAM) Function App %
€ Tags - - a
rﬂ Function App Down or Reporting ErrorsAvailability and Perforl
P Diagnose and solve problems
@ Security ﬂ Function App Health Check Functions Performance
Events (preview) Function App Settings Check Configuration and Management
Functions
Wl Functions Found 3 Results, Press Escape to clear search bar |
App keys Troubleshoot Tro
App files

Figure 10-14. Search for the appropriate diagnostic to be performed

You will get the diagnostic results in a few seconds. You can see some issues being
highlighted in the Function App General Information and Function App Execution and
Errors sections. See Figure 10-15.

246

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

funcloggingdemo | Availability and Performance

Overview 2 Search for common problems or tools

Application Changes (Pre..

>,
W

@ ©

Function App Down or Reporting Errors‘- L

Application Crashes

B

B Application Insighvs Log.. A Function App General Informatior
[} Function App Down or Rep..

Function Cold Start 1) Function Executions and Errors

m Function Execution Perfo..

[Function Executions and .. (V] Function App Offline History

sl High CPU Analysis

(D HTTP dxx Errors o Function Execution Performance
& Memory Analysis

ﬂ Messaging Function Trigg.. 0 Function Cold Start

Figure 10-15. Errors reported by the diagnostics run

If you scroll down, you can see issues being reported as Function Compilation Error
(.csx). Specifically, in Figure 10-16, you can see a red exclamation point in the Function
Compilation Error (.csx) section, and when you further drill down in the subsequent
steps, you can see that you have a script error highlighted as Script Compilation Error
(.csx). See Figure 10-16.

funcloggingdemo | Availability and Performance

- emmen s gaan 4 marrere s e s

O overview
_,.?3 Application Changes (Pre.. = —
0 Function Compilation Error (.csx)
d Application Crashes
Application Insights Log..
[Application Insights Log @ Key Vault Application Settings Diagnostics

m Function App Down or Rep..

@ Function Cold Start L] Check RunFromPackage Logs

Figure 10-16. More errors reported by the diagnostics run

If you expand the Function App General Information section, you can see that the
function app is in the Stopped state. See Figure 10-17.

247

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

A Function App General Information

This detector will give the general information about this Function App.

A Function App General Information (Up-to-date)

Description Current Function Host Version
3.0.15417.0

Platform
Windows

Hosting Plan
Consumption Plan

Running Status
A stopped

Figure 10-17. Function App General Information section

If you expand the Function Compilation Error (.csx) section, you can see where the
compilation error is in the function code. See Figure 10-18.

(1] Function Compilation Error (.csx)

Detects information about compilation errars in the latest execution.

0@ Script Compilation Error

Summary The most recent execution of your function app had the following function compilation errors: Seript compilation failed,

Naote that there is a 5-10 minute delay in information.

Time frame 4/3/2021 5:12:02 PM - 4¢3/2021 5:34:53 PM
Hest instance ID BcT1459-facT-4316-804c-bfa78d2071be
Details Function Error Message

HttpTrigger] Function compilation error

‘LogSuperCritical' accepting a first argument of type 'lLegger’ could be found (are you missing a

run.csx24,9): error C51061: ‘ILagger’ dees not contain a definition for 'LogSuperCritical’ and no ad
HttpTriggerl
reference?)

Recommended steps Your function app’s .csx files are compiled when an instance is initialized. Please resolve the compilation errars abave. If
reference errors, please check that you are installing them correctly for version 1.x according to our documentation. If yg
sure that your project.json file is in the same directory as your function.

Figure 10-18. Function compilation error

248

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Monitor Azure Functions and Create Alerts

You can monitor your Azure function metrics on the Metrics tab. Go to the Metrics tab.
See Figure 10-19.

Home *> funcloggingdemo

a4 funcloggingdemo | Metrics

Function App

£ Search (Ctrl+/) «

1 Extensions o ‘l— New chart

API Avg Http
»> APl Management %+ Add m
AP definition e
_ Scop
@ CORS (® [fund
AN
Monitoring
BN Alerts 2
il Metrics

Figure 10-19. Go to the Metrics tab

Select a metric and an aggregation. You will get a chart for the metric that you can
use to analyze your function’s performance and execution. You can toggle between a line
chart, area chart, bar chart, and scatter chart. You can also add a new chart by clicking
the “New chart” option. See Figure 10-20.

249

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

~ New chart C) Refresh | Share ~~ f;‘._.:} Feedback ~.~

% Add metric Fy Add filter %2 Apply splitting [&= Line chart

.a/ Scope Metric Namespace Metric Aggregation a\\
& |

“u} -
\ & | funcloggingdemo App Service standard m... v Http Server Errors v Avg M /
R

0.80

6 PM Apr 04

Http Server Errors (Avg)
funcloggingdemo

1.86

Figure 10-20. Monitor Azure functions

You can set alerts and be notified in case of anomalies or deviation from the normal
behavior of the Azure function. To set an alert, go to the Alerts tab and click “New alert
rule” See Figure 10-21.

un funcloggingdemo | Alerts »

Function App

L Search (Ctrl+) « |-|- New alert ruIeI

7 Extensions

—
[Subscription : Visi
API

APl Management
API definition

@ CORS

Monitoring

KN Alerts

i Metrics

Figure 10-21. Create a new alert rule

250

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Now you need to configure the scope, condition, and action for the alert. The scope
specifies which Azure resource to monitor. The condition specifies what to monitor, for
example, when the resource gets deleted, and the action specifies what to do when the
condition is met, for example, send an email or invoke a Logic App instance. Make sure
you have selected the right resource in the scope. If not, click “Edit resource” and select
the right resource. Click “Add condition” to configure a condition. Let’s monitor for the
condition when the function app gets into a stopped state. See Figure 10-22.

Create alert rule

Rules management

Create an alert rule to identify and address issues when impaortant condition
When defining the alert rule, check that your inputs do not contain any sens

Scope
Select the target resource you wish to monitor.

Resource

i funcloggingdemo

Condition

Configure when the alert rule should trigger by selecting a signal and defini
Condition name

No condition selected yet

Add condition

Actions

Send notifications or invoke actions when the alert rule triggers, by selecting

Create alert rule

Figure 10-22. Add a condition

251

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Search for Stop Web App and select it. See Figure 10-23.

Configure signal logic

Signal type @
| Al v

Displaying 1 - 1 signals out of total 1 search results

Choose a signal below and configure the logic on the next screen to define the alert condition.

Monitor service @

All

[2 stopl
Signal name TL Signal type
Stop Web App (microsoft.web/sites) g Activity Log

Figure 10-23. Configure the condition

252

Click Done to configure the condition. See Figure 10-24.

CHAPTER 10

ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

. Over the last & hours

Alert logic

]
Wit

Event Level

Configure signal logic

No data available

Status @

All selected

~ All selected

Condition preview

Whenever the Activity Log has an event with Category="Administrative’, Signal name='Stop

Figure 10-24. Click Done to configure the condition

Now let’s add an action. Click “Add action group.” See Figure 10-25.

253

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Create alert rule

Rules management

Actions

Send notifications or invoke actions when the alert rule triggers, by selecting or creat
Action group name

No action group selected yet

Add action groups

Alert rule details

Provide details on your alert rule so that you can identify and manage it later.

Alert rule name * © Specify the alert rule name
Description Specify the alert rule description
Save alert rule to resource group * @ rg-book

Enable alert rule upon creation

Figure 10-25. Click “Add action group”

Click “Create action group.” See Figure 10-26.

Select an action group to :

The action group selected will attach to this alert rule

+ Create action group

Subscription @

[O Search to filter items...

Action group name ™

D Application Insights Smart Detection

Figure 10-26. Create an action group

Provide a name for the action group and click Next: Notifications. See Figure 10-27.

254

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Create action group

Basics Motifications Actions Tags Review + create

An action group invokes a defined set of notifications and actions when an aler|
Project details

Select a subscription to manage deployed resources and costs. Use resource gr
all your resources.

Subscription * ©]

Resource group * @ rg-book
Create new

Instance details

Action group name * © I FunctionStops

Display name * © FunctionStop

This display name is limited to 12 charactd

Previous | Mext: Notifications >

Figure 10-27. Provide basic details for the action group

Set the notification type to Email and provide a name for the notification.

See Figure 10-28.

255

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Create action group

Basics MNotifications Actions Tags Review + create

Notifications

Configure the method in which users will be notified when the action group triggers. Select no
reciever details and add a unique description. This step is optional.

Notification type O Name (O Selected O

[Email/SMS message/Push/Voice v “| Email ||

Please configure the notification by clicking the edit button.

| v

Previous Mext: Actions >

Figure 10-28. Select Email

You need to configure the email details. Provide email details and click OK. You can
select the SMS and Voice check boxes and provide the country code and phone number.
See Figure 10-29.

256

CHAPTER 10

ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Email/SMS message/Push/Voice

Add or edit an Email/SMS/Push/Voice action

Email

email * © [IRGyahoo.com

Country code

Phone number

Azure account email @

[:I Voice

Country code @

Phone number

& -)
M —

[:I SMS (Carrier charges may apply)

[] Azure app Push Notifications

Enable the common alert schema. Learn more

Figure 10-29. Provide the email details

You can go to the Actions tab and configure an action. For example, run an Azure

function when the condition meets or executes a Logic App. Configuring an action is not

mandatory. You can click “Review + create”

group. See Figure 10-30.

and then click Create to create the action

257

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Create action group

Basics Notifications Actions Tags Review + create

Actions

Configure the method in which actions are performed when the actio
associated details, and add a unique description. This step is optional,

Action type O Name &

A

Automation Runbook
Azure Function

ITSM

Logic App

Secure Webhook

Webhook

Figure 10-30. Add an action and click “Review + create”

Provide an alert rule name and click “Create alert rule.” The alert gets created. You
can stop the function app on the Overview tab to get an alert. See Figure 10-31.

258

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

Create alert rule

Rules management

Actions

Send notifications or invake actions when the alert rule triggers, by selecting or creating a new action group. Learn more
Action group name Contains actions
FunctionStops 1 Email @

Manage action groups

Alert rule details

Provide details on your alert rule so that you can identify and manage it later.

Alert rule name * @ I Function Stop Alertl I

Description Specify the alert rule description
Save alert rule to resource group * (© rg-book h
Enable alert rule upan creation

Create alert rule

Figure 10-31. Click “Create alert rule”

Restrict the Number of Scaling Instances
for the Azure Function App

In the Consumption Plan, the underlying Azure platform scales the Azure function. It
adds new instances whenever there is a surge in load and removes additional instances
whenever the incoming load decreases. You do not have explicit control of how the

Azure function scales in the Consumption Plan. However, you can define a maximum
limit on the number of instances that the Azure functions can scale out. This action will
help you keep tabs on the infrastructure cost and efficiently plan the Azure function app
infrastructure. To set a maximum scaling limit, go to the “Scale out” tab in the Azure
portal. You can set the maximum scale-out limit and click Save. This setting will ensure
that the Azure function will not scale out beyond the maximum limit set. See Figure 10-32.

259

CHAPTER 10

ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

F S

B Cus

g, funcloggingdemo | Scale out

unction App

2 Search {Cul+f) « 2 Discard (O Refresh

B
tom domains i 4’ Dynamic Scale out
o ne L

“» Networking

Enforce 2cale Ut Linlt (&

el OF
ER Push

Mainum Seale Oue Lirit & O
1 Properties
B Locks
App Ser
BE. App service plan

O Quotas

/551 settings
This allews yeu to contral the bounds that your Consumption app can scale within, Learn mare

App Scale out

wice plan

Figure 10-32. Set the maximum scale-out limit for the Azure function

Summary

In this chapter, you learned how to enable Application Insights for Azure Monitor and

generate logs for your Azure function. You explored how to analyze the generated logs

and troubleshoot issues from the generated logs. You learned how to diagnose issues for

Azure functions with ease and troubleshoot failures. You also learned how to monitor

metrics for the Azure function and set alerts. Limiting the number of scaling instances

is an important aspect for Azure functions running in a Consumption Plan. You learned

how to limit the number of scaling instances for the Azure function running on the

Consumption Plan.

The following are the key takeaways from this chapter:

260

You can use LogError, LogWarning, LogCritical, and
LogInformation methods to push logs to Application Insights.

You can go to the “Diagnose and solve problems” tab and diagnose
Azure function failures. The underlying function performs the
diagnostics and provides a well-articulated report for the issues.

On the Metrics tab, you add charts based on an available metrics and
then monitor an Azure function based on the metric criteria.

CHAPTER 10 ENABLING APPLICATION INSIGHTS AND AZURE MONITOR

e You can add an alert on the Metrics tab and get alerted based on your
configured anomaly condition. You can set both a notification and an

action to be performed whenever the anomalous condition is met.

e On the “Scale out” tab, you can specify the maximum number of
instances that your Azure function can scale out to.

In the next chapter, you will explore how to integrate Azure Key Vault for secret
management with Azure Functions.

261

CHAPTER 11

Storing Function Secrets
in Azure Key Vault

In the previous chapters, we discussed ways to build serverless solutions to solve real-
world problems by using a combination of triggers and bindings in Azure Functions. In
some of the cases, you used other services in the solutions such as SendGrid, Azure Blob
Storage, and Azure SQL Database. To use SendGrid, you needed a valid API key, while
you need the connection string to interact with Azure SQL Database, Azure Blob Storage,
and Azure Queue Storage. These are confidential secrets that should not be exposed to
anyone. With such information, someone could cause a lot of harm to your application
and organization.

AppyMash is an Internet company that provides multiple services, ranging from
ecommerce to OTT content, to its users on a subscription basis. It is currently running
its applications using Azure App Service. It has been on an expansion spree and has
grown from a mere startup two years ago to an Internet giant now with a huge ecosystem
of services. To cope with the application development pace, the development team has
integrated multiple SaaS solutions. Recently, one of the SaaS providers that provides
mailing capabilities advised all its customers including AppyMash to regenerate the
API keys, because of a recent security breach in its databases. Following the vendor’s
advice, the AppyMash team decided to regenerate the API keys. But the problem was
the expected downtime to redeploy all the applications after replacing the API keys in all
the applications. Almost all the applications in the app ecosystem were impacted from
this mandatory modification as they were consuming the services from the SaaS vendor
for sending all the required mail communications. This was a time-consuming process,
which impacted all the new customers who were trying to subscribe to the services
along with the existing customers who were trying to change their passwords or perform

263
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_11

https://doi.org/10.1007/978-1-4842-7122-3_11#DOI

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

any operations that needed mail communications. The impact of such an event can be
catastrophic for the organization’s business and reputation. Such a situation justifies the
need for a centralized secret manager.

In this chapter, you will look at a service offered by Azure called Key Vault that helps
to manage and store secrets.

Structure of the Chapter

This chapter will explore the following topics related to Azure Key Vault and Azure
Functions:

o Getting started with Key Vault
e C(Creating vault in the Azure portal
o Creating an access policy

o Fetching secrets from Azure Key Vault using Azure Functions

Objective

After studying this chapter, you will be able to do the following:
o Create a vault and store your app secrets there

o Interact with Azure Key Vault from Azure Functions

Getting Started with Azure Key Vault

Azure Key Vault is a cloud service provided by Microsoft to store secrets and sensitive
information. It provides a way to store app secrets along with certificates inside a secure
container in a centralized manner. With the help of Azure Key Vault, developers no
longer need to rely on configuration files or environment variables to store sensitive
information. You can access the secret values using the URLs by authenticating an app
with managed identities, service principals, and/or certificates.

264

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

The following are the advantages of using Azure Key Vault:

o Ithelpsreduce deployments of your application that are caused due
to a change in any of the application secrets.

o It provides a safe and secure mechanism to store and fetch sensitive
information.

o Itsupports importing as well as generating keys, secrets, and
certificates.

o It provides role-based access policy to secrets.

In this chapter, you will look at ways to store your secrets in a centralized and secure
manner in Azure Key Vault.

Create an Azure Key Vault in the Azure Portal

Go to the Azure portal. Search for key vaults in the search box and click it. See Figure 11-1.

Microsoft VIO © key vaulty I

Services

Azure s

C) Key vaults

—|— “® Backup vaults

Figure 11-1. Searching for key vaults

Click Create to create a vault. See Figure 11-2.

265

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT
Home >

Key vaults =

Default Directory

-+ Create | & Manage deleted vaults 23 Manage view v O Refresh

| Filter for any field... | Subscription == Azure Pass - Sponsorship

Showing 0 to 0 of 0 records.

Figure 11-2. Create a vault

Select the subscription you to use for billing and then enter the resource group
where you want to create this resource. Enter a globally unique key vault name, select the
nearest region, and then select the appropriate pricing tier. Finally, click “Next: Access
policy.” See Figure 11-3.

Create key vault

Subscription * |w v I

Resource group * | ovew) rg-chapter-11 v |
Create new

Instance details

Key vault name* @ lkv-chaptel-1 1 »/I
Region * | Eastus i |
Pricing tier * (@ I Standard [|

Recovery options

Soft delete protection will automatically be enabled on this key vault. This feature allows you to recover or permanently delete
a key vault and secrets for the duration of the retention period. This protection applies to the key vault and the secrats stored
within the key vault.

To enforce a mandatery retention period and prevent the permanent deletion of key vaults or secrets prior to the retention
period elapsing, you can turn on purge protection. When purge protection is enabled, secrets cannot be purged by users or
by Microsoft.

< Previous I MNext : Access policy > I
Figure 11-3. Click “Next: Access policy”

Select an appropriate vault access model and add an access policy if you want on
this screen. After you have configured all the access policy-related changes, click Next :
Networking. See Figure 11-4.

266

CHAPTER 11

Create key vault

Basics Access policy MNetworking 1ags Hewview + Create

Enable Access to:

D Azure Virtual Machines for deployment &

D Azure Resource Manager for template deploy @

D Azure Disk Encryption for velume encryption (O

@ Vault access policy
O Azure role-based access control

Permission model

+ Add Access Policy

Current Access Policies
Name Email Key Permissions

USER

STORING FUNCTION SECRETS IN AZURE KEY VAULT

Secret Permissions.

ﬁ ashirwad satapathi EE— | 2 selected

e | | 7 selected N

] I Mext : Networking > I

< Previous

Figure 11-4. Click Next : Networking

Select the connectivity method appropriate for your solution and click Next : Tags.

See Figure 11-5.

267

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Create key vault

Basics Access policy MNetworking Tags Review + create

Network connectivity

You can connect to this key vault either publicly, via public IP addresses or service endpoints, or privately, using a private
endpoint.

Connectivity method I @ Public endpoint (all networks) I
(_) Public endpoint (selected networks)
O Private endpoint

< Previous I Next : Tags > l
Figure 11-5. Click Next : Tags

You can add tags for the resource, but this is optional. This helps in categorizing
resources and shows the consolidated billing of all the resources having the same
tag. After you fill in the name and value in the tags, click “Next : Review + create.” See
Figure 11-6.

268

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Create key vault

Basics Accesspolicy Networking Tags Review + create

Tags are name/value pairs that enable you to categorize resources and view consolidated billing by applying the same tag to
multiple resources and resource groups.

Name (& Value () Resource

' | 3 [J Key vault

[< Previous J I Next : Review + create > I

Figure 11-6. Click “Next : Review + create”

On this screen, you will see a summary of all the configuration that you entered
in the previous series of screens. A validation check will be performed on the entered
configuration. If the validation passes, then click Create, as shown in Figure 11-7.

269

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Create key vault

@ vsiidation passed

Basics

Subscription Azure Pass - Sponsorship
Resource group rg-chapter-11

Key vault name kv-chapter-11

Region East US

Pricing tier Standard

Soft-delete Enabled

Purge protection during retention period Disabled

Days to retain deleted vaults 90 days

Access policy

Azure Virtual Machines for deployment Disabled

Azure Resource Manager for template Disabled

deployment

Azure Disk Encryption for volume Disabled
encryption

Permission model Vault access policy
Access policies 1

< Previous Next > Download a template for automation
Figure 11-7. Click Create

Once the deployment is complete, Click “Go to resource.” See Figure 11-8.

@ kv-chapter-11 | Overview »
v Deployment

I 2 Iiearc'n {Ctrl+/)] « [i] Delete () Cancel (T) Redeploy () Refresh

o» Overview € wed ove your feedback! —
& Inputs
7= Outputs @ Your deployment is complete

= Template Deployment name: kv-chapter-11

Subscription: Azure Pass - Sponsorship (45abecfd-0e97-4b63-b8e0...
Resource group: rg-chapter-11

v Deployment details (Download)

- Next steps

Go to resource

Figure 11-8. Click “Go to resource”

270

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Store Secrets in Key Vault

As you have provisioned a vault, let’s store your API key as a secret there. To store your
secrets, search for Secrets in the sidebar and then click + Generate/Import, as shown in
Figure 11-9.

Home > kv-chapter-11 > kv-chapter-11

kv-chapter-11 | Secrets

Key vault
‘)7' Search (Ctrl+/) ‘ « I -+ Generate/Import IO Refresh 7T Restore Backup .
i Name Type
Keys

There are no secrets available.
ﬁ_‘
. Secrets

9= Certificates

= Access policies
 Networking

O Security
Figure 11-9. Go to Secrets and click Generate/Import

Here, you will be prompted to enter the required values. By default, Manual will be
selected as the Upload option. Enter the name of the secret and then enter its value.
In this case, I have entered myApiKey as the name and entered Hello@123 as the API
key in the Value field. You will fetch this value using an Azure function later in this
chapter. You can also define the content type of the value. In addition, you can set the
activation data and deactivation date. This enables you to define when your secret will
be automatically activated or deactivated without needing any human intervention.
Alternatively, you can enable the secret by selecting Yes for Enabled. After you have
entered all the information in the required field, click Create. See Figure 11-10. This will
redirect you to the secrets screen where you will see the name of the secret you created.

271

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Home > kv-chapter-11 > kv-chapter-11 >

Create a secret

Upload options I Manual ~ I
Name * @ I myApiKey v l
Value* @ I TTTER] \/I
Content type (optional) I I
Set activation date (@ D
Set expiration date @ D
Enabled i No)

A /

Figure 11-10. Click Create

Click the row containing myApiKey to get the value of secret identity to fetch the
value of your secret. See Figure 11-11.

Home » kv-chapter-11 » kv-chapter-11
[kv-chapter-11 | Secrets - X
vy vault
B Search (Cuels)) @ -+ Generate/import () Refresh T Restore Backup /7 Manage deleted secrets
Settings @ The secret ‘myAgiey” has been successfully created.
Keys
3 Secrets MName Type Status Expiration date
&= Centificates I myApiKey v Enabled

I= Access policies

by Neworking

Figure 11-11. Click myApiKey

Now click the current version. Azure Key Vault maintains the versions of your secret.
See Figure 11-12.

272

Home > kv-chapter-11 > kv-

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

chapter-11 »

[myApiKey %
Versions
b NewVersion () Refresh [l Delete L Download Backup
Version Status Activation date Expiration date
CURRENT VERSION
I aBb24c7610444498abdacb 58bdT 1012 ~" Enabled I

Figure 11-12. Click Current Version

On the current version screen, you will get all the values associated with your secret.

You can also enable or disable your secret on this screen along with the option to set the

activation or expiration date. You can change the value of your secrets on this screen too.

Let’s copy the secret identifier value from here. You will later use this value to fetch the

value of the secret from your function app. See Figure 11-13.

Home > kv-chapter-11 > kv-chapter-11 > myApiKey >

a8b24c7610444498ab4ach58bd71f01a =

Secret Version

Properties
Created 5/9/2021, 11:46:47 PM
Updated 5/9/2021, 11:46:47 PM

Secret Identifier

https://kv-chapter-11.vault.azure.net/secrets/m... [

Settings
Set activation date @

U

Set expiration date ©

O

Enabled

Figure 11-13. Copy the value of the secret identifier

273

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Create an Azure Function in the Azure Portal

Go to the Azure portal, search for function app in the search box, and click it. See
Figure 11-14.

Microsoft Azure O function app| I

Services See al

Azure services

4> Function App

+ E Service catalog managed application definitions

‘ .
Create a i AppDynamics

resource # App Configuration
Figure 11-14. Click Function App
Click Create to create a new function app. See Figure 11-15.

Home >

Function App =

Default Directory

| Filter for any field... | Subscription == 4

Showing 0 to 0 of O records.

Figure 11-15. Click Create

Now, you will be required to enter the subscription name, resource group, and
function app name that needs to be globally unique. Select Code as the Publish option,
.NET as the runtime stack, and 3.1 as the version. Select the nearest region as per your
requirements. After filing in all the required information, click Next : Hosting. See
Figure 11-16.

274

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Home > Function App >

, Create Function App

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subscription* (O | Azure Pass - Sponsorship (45abecfd-0e97-4b63-b2e9-2e68632201bc) v ||
~ Resource Group * (D | rg-chapter-11 ™ |
Create new

Instance Details

Function App name * I chapter-11-func-app I
.azurewebsites.net

Publish * O Docker Container

Runtime stack * I ner |

Version * | EX M

Region * I Central US e I

Figure 11-16. Click Next : Hosting

On the current screen, you will have to select an existing storage account or create
anew one. By default, a new storage account with a random name will be filled in for
you by the portal. When you click Create for this function app, it will create the storage
account. Select Windows as the operating system and Consumption (Serverless) as the
plan type. Now click Next : Monitoring. See Figure 11-17.

275

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Home > Function App >

, Create Function App

Basics Hosting Menitering Tags Review + create

Storage

Wwhen creating a function app, you must create or link to a general-purpose Azure Storage account that supports Blobs,
Queue, and Table storage.

Storage account * (MNew) storageaccountrgchas056 v
9 g g
Create new

Operating system

The Operating System has been recommended for you based on your selection of runtime stack.

Operating System * O ljnux

Plan

The plan you choose dictates how your app scales, what features are enabled, and how it is priced, Learn more I3

Plantype* @ I Consumption {Serverless) ~ I

[< Previous]I Next : Monitoring > I

Figure 11-17. Click Next : Monitoring

Select Yes for Enable Application Insights and click Next : Tags. See Figure 11-18.

276

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Home > Function App >

Create Function App

»

Basics Hosting Monitoring Tags Review + create

Azure Monitor application insights is an Application Performance Management (APM) service for developers and
DevOps professionals. Enable it below to automatically monitor your application. it will detect performance ancmalies,
and includes powerful analytics tools to help you diagnose issues and to understand what users actually do with your
app. Learn more2

Application Insights

Enable Application Insights * O nol| (@) ves

Application Insights * | (New) chapter-11-func-app (Central US) ~ |
Create new

Region Central US

[review + create [NINETTVETRR pr TN |

Figure 11-18. Click Next: Tags

You can add tags for the resource, but this is optional. After you have filled in the
name and value in the tags, click “Next : Review + create.” See Figure 11-19.

277

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Heme > Function App >

Create Function App

b

Basics Hosting Monitoring Tags Review + create

Tags are name/value pairs that enable you to categorize resources and view consclidated billing by applying the same
tag to multiple resources and resource groups.

Note that if you create tags and then change resource settings on other tabs, your tags will be automatically updated.

Name @ Value © Resource

‘ : | l | 4selected N

Review + create I < Previous | I Next : Review + create » l

Figure 11-19. Click “Next : Review + create”

On the next screen, shown in Figure 11-20, you will see a summary of all the
configuration values you entered in the previous screens. A validation check will be done
on the configuration values. Once the validation has passed successfully, click Create.

278

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Home > Function App >

, Create Function App

Basics Hosting Monitoring Tags Review + create

Summary

., Function App

"

" by Microsoft
Details
Subscription 45abecfd-0e97-4b63-b8e9-9e6863ae01be
Resource Group rg-chapter-11
Name chapter-11-func-app
Runtime stack NET 3.1
Hosting
Storage (New)
Storage account storageaccountrgcha9056

MNext > Download a template for automation

Figure 11-20. Click Create

Once the deployment is complete, click “Go to resource.” See Figure 11-21.

@ Your deployment is complete

Deployment name: Microsoft.Web-FunctionApp-Portal-639f07a2-a...
Subscription: Azure Pass - Sponsorship (45abecfd-0e97-4b63-b&ed...
Resource group: rg-chapter-11

v Deployment details (Download)
~ Next steps

Add a function. Recommended

Mzanage deployments for your app. Recommended

Go to resource

Figure 11-21. Click “Go to resource”

279

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Click Functions in the side menu and then click + Add. See Figure 11-22.

() chapter-11-func-app | Functions

Function App

P Search (Ctrl+/) ‘ « I + add D Refresh [®] Delete

¢ Diagnose and solve problems =

(&) Security ‘;-‘ Filter by name...

Events (preview)

Functions Name T

1A} Functions No results.
App keys

B App files

Figure 11-22. Click + Add

Since you are going to develop your function in the portal itself, let’s select “Develop
in portal” for the development environment. Select “Http trigger” as the template.
Then click Add to create the Azure function. This will create an Azure function called
HttpTriggerl out of the box. See Figure 11-23.

280

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Add function X

Select development environment
Instructions will vary based on your development environment. Learn more

Development environment I wzi‘ Develop in portal W I

Select a template

Use a template to create a function. Triggers describe the type of events that invoke
your functions. Learn more

Y’ Filter

Template Description

HTTP trigger A function that will be run whenever it receives an HTTP)
request, responding based on data in the body or query
string

Timer trigger A function that will be run on a specified schedule

Azure Queue Storage trigger A function that will be run whenever a message is added

to a specified Azure Storage queue

I Add I Cancel |

Figure 11-23. Click Add

The HttpTrigger1 function will have boilerplate code to return a message along with
the name passed in the query string or request body payload. You can click Code + Test
to view the code of the function. To send a request to this function, click Get Function Url
to get the URL of this function. You can paste this URL in a browser tab to send a request.
See Figure 11-24.

281

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

(£} HttpTrigger1 2

Function
!/’3 Search (Ctrl+/) | « ® Disable ﬁ Delete @ Get Function Url ’:) Refresh
Sl Overview - Essentials
Function app : chapter-11-func-app
Developer
Status : Enabled

Code + Test

Resource group (change) : rg-chapter-11

S ROration Subscription (change) : Azure Pass - Sponsorship

& Monitor Subscription ID : 45abecfd-0e97-4b63-b8e9-9e6363ae01be

Function Keys

Figure 11-24. Click Code + Test

Select Code + Test and modify the function’s code by using the code shown in
Listing 11-1. Here you are reading the value of the API key present in your application
setting and later returning it as a response to the users.

Listing 11-1. Function Code to Fetch Value of Secret from Key Vault

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)
{
var apiKey = System.Environment.GetEnvironmentVariable("myApiKey");
log.LogInformation(apiKey);
return new OkObjectResult(apiKey);

The function will look for a key named myApiKey in the application settings and then
get its value. Let’s add the key-value pair of myApiKey in the application settings. Go back
to the function app screen; then click Configurations in the Settings sidebar. Now click
the “+ New application” setting to add a new key-value pair. See Figure 11-25.

282

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

' chapter-11-func-app | Configuration

Function App
[z""‘ search (Ctrl+)) « () Refresh [5] Save X Discard
-

Settings Application settings Function runtime settings

il configuration " s
Application settings
& Authentication
Application settings are encrypted at rest and transmitt

Authentication (classic) below. Application Settings are exposed as environmen

@ Application Insights

I -+ New application setting I@ Showvalues .

Identity

| Y Filter application settings

Figure 11-25. Click “+ New application setting”

Now enter myApiKey as the name and enter @Microsoft.
KeyVault(SecretUri={enter the value of the secret identifier}) as the value. This defines
that the source of this value is the key vault, and it looks for the value in the key vault
using the secret identifier, whenever the function wants to get the value of this key. After
entering the values, click OK and then click Save on the configuration screen to save the
key-value pair. See Figure 11-26.

Add/Edit application setting x
Mame l myApiKey D I
Value @Microsoft KeyVault(SecretUri=https:/fkv-chapter-11.vault azure.net/secrets/myApiKey/a8b24cT7610444498abdach5... Ta] I

|_] Deployment slot setting

Figure 11-26. Click OK

283

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

Let’s use the function URL of the HttpTrigger1 function to send a request to the
function to fetch the app secret. You can get the function URL by going to Functions,
selecting HttpTriggerl, and then clicking Get function URL. After getting the function
URL, let’s paste the URL in a browser tab and press Enter to get the response from your
function.

As you can see in Figure 11-27, you got the value of myApiKey that you entered in the
application settings, which was supposed to fetch the value from the key vault.

L G & https://chapter-11-func-app.azurewebsites.net/api/HttpTrigger feode=L4nTUS/ip6paPISSykgPiwrussyBUMank3jOktnj.. & g

@Microsoft.KeyVault(SecretUr -

Figure 11-27. Response from the function

You may wonder why you aren’t getting the value of the secret. You entered the
secret identifier. Your function should have been able to fetch the value from the key
vault. But because you haven’t allowed this function app to access the key vault, it is
unable to get the value of the secret stored in the vault. In the next section, you will learn
how to configure the access policy to allow the function app to access the secrets from
the key vault.

Add an Access Policy for Azure Key Vault

To allow access to your key vault from the function app, you will have to create a user-
assigned identity for your function app and then add an access policy for this app in the
key vault.

Go to the function app. Click Identity in the Settings section of the sidebar. Then set
the status to On for the system-assigned identity and click Save. This will register your
app in the Azure Active Directory. After registration, the function will get the permission
to access resources protected by Azure Active Directory. Azure Key Vault authenticates
with the help of the Azure Active Directory Service principals. The service principals
of Azure Active Directory can be a user or application service principal or a managed
identity of a resource. In this case, you create a service principal for your function app by
enabling the status in the system-assigned identity. See Figure 11-28.

284

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

chapter-11-func-app | Identity

Function App

2 Search (Ctrl+/) | &

System assigned ~ User assigned
Y R

& Authentication A system assigned managed identity is n

role-based access control (Azure RBAC).

Authentication (classic) identities.

@ Application Insights

Save >< Discard O Refresh
Identity
Status @
B Custom domains ,f
@ TLS/SSL settings

4> Networking
Figure 11-28. Create a system-assigned managed identity

Now go to the key vault. Click “Access policies” and then click Add Access Policy.
See Figure 11-29.

g= kv-chapter-11 | Access policies

Key vault
|,C' search (Ctrl+)) | « 5] save X piscard () Refresh
g
-
REYS Enable Access to:
= | > .
Lg Secrets E] Azure Virtual Machines for deployment ©
= Certificates [) Azure Resource Manager for template deployment @

Y= Access policies E] Azure Disk Encryption for volume encryption @

% Helnoing Permission model (® Vault access policy
©Q Security O Azure role-based access control
III .
il Properties
I+ Add Access Policy I

E] Locks

Lo Current Access Policies
Monitoring

Figure 11-29. Click + Add Access Policy

Now, you will have to fill in all the required information in the order shown in
Figure 11-30. Select Get for “Secret permissions.” Following the principle of least
privilege, you have granted only the Get permission in this access policy. Click “None

285

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

selected” for “Select principal.” This will open the side screen Principal. Search for the
function app chapter-11-func-app in the search box and then select it. This will add a
reference of the service principal of the function app in the access policy. Now click Add
to add this access policy. This will redirect you to the Access Policies screen. You will
have to click Save here to save the access policy. See Figure 11-30.

Heme > kv-chapter-11 Principal X
Add access policy - Selecta prncisal 3
Add sccess polizy
|2 chapter-11-func-app |
Corfigure from tempiate (opticnal) ol (DU N | L
Key permissions | 0selected ~
Secret permissions | ~ 11 4
Centificate permissions L 0 selected e 1
Select principal * Mone selected D

Selected items
Authorized applicatizn @

m chapter-11-func-agp r 7
a Remove
m 6 B 50007047903 410% atst-19283052m856 L J

Figure 11-30. Click Add

Note If you want the privilege to update or delete the secret, then you can add a
permission like Set or Delete.

Now your function should be able to access the value of secrets stored in the vault
as you have created an access policy empowering your function with Get permission for
secrets by adding the service principal of your function app.

Let’s go back to the tab where you sent a request to your HttpTrigger1 function. Let’s
refresh the browser and see the response. See Figure 11-31.

<« &} (& https://chapter-11-func-app.azurewebsites.net/api/HttpTrigger feode=L4nTUSipbpaPlSSyKgPjwrusx¥8UMank3j H A 15

Hello@123

Figure 11-31. Response from the function

286

CHAPTER 11 STORING FUNCTION SECRETS IN AZURE KEY VAULT

As shown in Figure 11-31, your function was able to return the value of the secret
stored in the vault this time. So, you have successfully built an Azure function to fetch
secrets from a vault. If you wanted to update the API key used by your function apps
or other applications that are using the API key, you would have to modify the value of
the secret in the key vault only, instead of modifying the value API key by going to the
application settings of all those applications.

Summary

In this chapter, you learned how to create a key vault using the Azure portal, store
secrets in the vault, create access policies, and fetch values of secrets stored in Azure
Key Vault using your functions. While application settings offer a mechanism to
reduce deployments caused by changes in application secrets, when you use common
application secrets like a connection string or API key of a particular service across
multiple applications, changing the values in the application settings of all the
applications will be a cumbersome task. Azure Key Vault comes in handy when you
need to modify the value of the secret in one place. In addition, Azure Key Vault provides
arole-based access mechanism using Azure Active Directory, and it does not allow
direct access to secrets to the application or to unauthorized resources/users. In the
next chapter, we will discuss ways to enable authentication and authorization in your
functions using Azure Active Directory.

287

CHAPTER 12

Authentication and
Authorization Using Azure
Active Directory

You can build APIs using HTTP-triggered Azure functions. These APIs can interact with
databases or perform mission-critical business logic. It is highly crucial to secure these
APIs. An HTTP-triggered Azure function should be available for authenticated users
and perform the actions/methods the user is authorized to do. Azure Active Directory is
an identity and access management solution on the Azure platform. You can integrate
HTTP-triggered Azure functions with Azure Active Directory with ease and enable all of
your authentication and authorization needs.

In the previous chapter, you learned how to secure the secrets and credentials used
by Azure Functions in Azure Key Vault. This chapter will explore how to secure access for
HTTP-triggered Azure functions using Azure Active Directory.

Structure of the Chapter

In this chapter, you will explore the following aspects of Azure Functions and Azure
Active Directory:

e What Azure Active Directory is
¢ What authentication and authorization are

o Implementing authentication and authentication for Azure Functions
using Azure Active Directory

289
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_12

https://doi.org/10.1007/978-1-4842-7122-3_12#DOI

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Objectives

After studying this chapter, you will be able to do the following:

o Implement authentication for HTTP-triggered Azure functions using
Azure Active Directory

o Implement authorization for HTTP-triggered Azure functions using
Azure Active Directory

What Is Azure Active Directory?

Azure Active Directory is a multitenant identity and access management system on the
Azure platform. You can build on-premises and cloud-based applications and leverage
Azure Active Directory for identity management. Thousands of SaaS-based applications
such as Microsoft 365, Dynamics CRM, and many more leverage Azure Active Directory
as their security backbone. Azure Active Directory can be used to bring in audit and
governance for users accessing Azure resources. Developers can implement single sign-
on and multifactor authentication for their applications using Azure Active Directory.

Automation is an essential aspect of resource provisioning in Azure. You can
use Azure PowerShell or Azure CLI or any other infrastructure-as-code solution like
Terraform to interact with and use Azure Active Directory via automation. You can write
automation to manage essential security aspects for an application such as user login
audits, unauthorized access attempts, and more.

The following are a few of the key features of Azure Active Directory:

e Supports single sign-on and multifactor authentication.

e Manages authentication and authorization for cloud SaaS-based
applications and on-premises applications.

e Rich SDK support for identity and access management to integrate
with a wide range of applications built using .NET, Java, Angular,
and more, such as MSAL libraries for .NET-based applications and
MSALA4J libraries for Java-based applications.

290

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

e Provides an enterprise-grade identity and access management
solution for business-to-business (B2B) and business-to-customer/
consumer (B2C) applications. It supports external identity providers
such as Facebook, Twitter, Google, or any other identity provider
that supports OAuth 1.0, OAuth 2.0, OpenID Connect, and SAML
protocols.

e Manages devices for your corporation.

o Provides domain services and facilitates joining Azure virtual
machines to a domain without needing a domain controller.

o Provides governance and reporting for security and access usages for
your application.

e Supports role-based authentication.

e Supports invoking powerful Microsoft Graph APIs.

What Are Authentication and Authorization?

Your application should identify who is trying to access and control what the user can
access. All unauthorized access to the application should be disallowed. Authentication
checks who the user is. It challenges the user to provide identification, and if the
challenge is successful, the application identifies the user and verifies the user’s
identity. Authorization dictates what an identified user can do in the application. As a
good practice, you create roles, which define what an authenticated user can do in the
application. You can assign multiple roles to the users. For example, an application has
two roles: Administrator and User. All the users who are assigned the Administrator
role can provide their credentials to the application and get authenticated. Then they
can access and work on all the administration pages in the application. Similarly,

when a user who has the User role logs in to the system, he will not have access to the
administration pages and will be limited to the application’s User pages. To sum up,
authentication verifies who the user is, and authorization dictates what the user can do,
as shown in Figure 12-1.

291

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Name : Sam Samis Sam is
. Password : xyz ' ‘ Authenticated Administrator

;= —H—

User Authentication Authorization Application
(Who you are) (What you can do) (Do only what
You are supposed
to do)

Figure 12-1. Authentication and authorization process

Implement Authentication and Authentication
for Azure Functions Using Azure Active Directory

Azure Functions provides excellent support for logging using Application Insights. Let’s
create an Azure function with Application Insights enabled using the Azure portal. Then
you can modify the function code to log some information, errors, and traces for the
Azure function. Open the Azure portal and click “Create a resource.” See Figure 12-2.

Azure services

+ CJ >

Create a Resource Azure Active
resource groups Directory

Figure 12-2. Click “Create a resource”

Click Compute and then click Function App. See Figure 12-3.

292

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Azure Marketplace Seeall Featured Seeall

Get started r Virtual machine
Learn more

Recently created

Al + Machine Learning Virtual machine scalg
Learn more

Analytics

Blockchain Kubernetes Service
I Compute I Quickstarts + tutorials
Containers)
Function App
Databases <’> Quickstarts + tutorials

Figure 12-3. Click Function App

Provide the basic details for the function. Let’s select .NET and 3.1 as the runtime
stack and the version. Click “Review + create.” See Figure 12-4.

293

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Create Function App

Create a function app, which lets you group functions as a logical unit for easier managemen
of resources. Functions lets you execute your code in a serverless environment without havin
publish a web application.

Project Details

Select a subscription to manage deployed resources and costs. Use resource groups like fold
all your resources.

Subscription * @ I
Resource Group * © | rg-book
Create new

Instance Details

Function App name * | funcauthdemao10

Publish * @:‘r Code O Docker Container
Runtime stack * | NET

Version * . 31

Region * [East Us

< Previous Next : Hosting >

Figure 12-4. Provide the basic details for the Azure function

294

Click Create. See Figure 12-5.

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Summary

4. ~, Function App

by Microsoft
Details
Subscription I
Resource Group rg-book
Name funcauthdemol10
Runtime stack .NET 3.1
Hosting

Storage (New)

Storage account storageaccountrgbog
Plan (New)

Plan type Consumption (Server|
Name ASP-rgbook-a%904
Operating System Windows

[l < Previous J Next > Downloa

Figure 12-5. Click Create

Go to the Azure function app once it is created. Now you need to add a function to
the Azure function app. Click the Functions tab and click Add. See Figure 12-6.

295

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

() funcauthdemo10 | Functions

Function App

‘,0 Search (Ctrl+/) l « () Refresh

-

7 QOverview

] 0 Filter by name...

& Activity log
Aa Access control (IAM)
Name T
€ Tags
No results.
2 Diagnose and solve problems
© Security

~ Events (preview)

Functions

5] Functions

Figure 12-6. Add a function

Select “Http trigger” and click Add. See Figure 12-7.

296

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Add function

Select development environment
Instructions will vary based on your development environment. Learn more

Development environment & Develop in portal v

Select a template

Use a template to create a function. Triggers describe the type of events that
your functions. Learn more

Y Filter

Template Description

HTTP trigger A function that will be run whenever it receives an
request, responding based on data in the body or
string

Timer trigger A function that will be run on a specified schedule

Azure Queue Storage trigger A function that will be run whenever a message is 4
to a specified Azure Storage queue

Azure Service Bus Queue A function that will be run whenever a message is

trigger to a specified Service Bus queue

Azure Service Bus Topic A function that will be run whenever a message is

trigger to the specified Service Bus topic

| Cancel

Figure 12-7. Select “Http trigger”

Once the function gets created, get into the function and click Code + Test.
See Figure 12-8.

297

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

HttpTrigger1 | Code

Function
| © Search (Ctrl+/) «
A} Overview

Developer

Code + Test

Integration

@ Monitor

Function Keys

Figure 12-8. Click Code + Test

Click Get Function Url and browse to the URL in the browser. Now let’s go to
Application Insights and verify whether these logs were added. See Figure 12-9.

(#) HttpTriggerl =

Function
|,;_': Kearch (Ctrl+/) | « /" Enable () Disable [il] Delete | Get Function Url
il Overview . Essentials
Function app : funcauthdemo10
Developer
Status : Enabled

B Code + Test)
Resource group (change) : rg-book

Integration Subscription (change) : Visual Studio Enterprise
B Monitor Subscription ID 1 a3759752-01d3-4b0e-ad35-71bd2f

Function Keys

Total Execution Count

Figure 12-9. Click Get Function Url

Now let’s enable authentication for the Azure function. Go back to the function app
and click Authentication. See Figure 12-10.

298

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

4. funcauthdemo10 | Authentication

Function App

| O Search (Ctrl+/) ‘ « & Send us your feed

W LSpU IS SIS

Settings

{I' Configuration

| Authentication

Authentication (classic)

@ Application Insights

Figure 12-10. Go to the Authentication tab

Click “Add identity provider” to add a provider that you will use to authenticate the
Azure function. See Figure 12-11.

Add an identity provider

Choose an identity provider to manage the user identities and authentication flow for your application.
Providers include Microsoft, Facebook, Google, and Twitter.

Learn more about identity providers ¢

Add identity provider

Figure 12-11. Configure the identity provider

Set the identity provider to Microsoft. Then select “Create new app registration” for
the app registration type, and select “Current tenant - Single tenant” for the supported
account types. Provide a name for the application that will get created in the Azure
Active Directory tenant. See Figure 12-12.

299

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Add an identity provider

Basics Permissions

Identity provider * Microsoft

App registration

An app registration associates your identity provider with your app. Enter the app reg|
your provider to create a new one. Learn more ¢

App registration type * I @: Create new app registrationl

(O Pick an existing app registration in th

O Provide the details of an existing apd

Name * | funcauthdema10 I
‘e .
Supported account types * I (@) Current tenant - Single tenant I

(j Any Azure AD directory - Multi-tenar
O Any Azure AD directory & personal N
O Personal Microsoft accounts only

Help me choose...

App Service authentication settings

Requiring authentication ensures all users of your app will need to authenticate. If yo
you'll need your own code for specific authentication requirements. Learn more o

m < Previous | Next: Permissions =

Figure 12-12. Configure the Microsoft identity provider

Scroll down and make the necessary configuration, as shown in Figure 12-13.
Click Add.

300

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Add an identity provider

Name * (O funcauthdemo10

Supported account types * I '\;, Current tenant - Single tenant I

O Any Azure AD directory - Multi-tenant

O Any Azure AD directory & personal Microsoft accounts
O Personal Microsoft accounts only

Help me choose...

App Service authentication settings

Requiring authentication ensures all users of your app will need to authenticate. If you allow unauthent
you'll need your own code for specific authentication requirements. Learn more

(@) " . g
Authentication * (@) Require authentication

O Allow unauthenticated access

Unauthenticated requests * l!: HTTP 302 Found redirect: recommended for websites|
O HTTP 401 Unauthorized: recommended for APls
(O) HTTP 403 Forbidden

Redirect to * Microsoft

Token store (D

< Previous l Next: Permissions >

Figure 12-13. Add a Microsoft identity provider

Now the authentication is configured for the application. Browse the function URL
that you copied earlier in an incognito or private browsing mode. It will prompt you to
provide your credentials. You can use the same credentials that you used to log in to the
Azure portal. See Figure 12-14.

301

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

o™ Microsoft
Sign in
timail. phone, or Skype

Can't access your account?

Next

Q Sign-in options

Figure 12-14. Enter your credentials

Let’s configure authorization now. You need to check if the logged-in user has the
necessary role configured to access the page. The Microsoft Graph API can help you get
the roles for the user in Azure Active Directory. Let’s go to the Azure Active Directory
application that you created and add the necessary permissions for Azure Active
Directory. Go to the Azure portal home page and navigate to Azure Active Directory.
Click “App registrations.” Then click the application that you created while enabling
authentication for the Azure function. See Figure 12-15.

302

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Home > Default Directory

[1 []
[[L]
-

i
"

Azure Active Directory

Overview

Getting started

B Preview features

#{ Diagnose and solve problems

Manage

oA

Users
Groups

External Identities

. Roles and administrators

i Administrative units

Enterprise applications

Devices

- App registrations I

Identity Governance
Application proxy
Licenses

Azure AD Connect

1 Custom domain names

Default Directory | App registrations =

& —+ New registration @ Endpoints Z}" Trof
0 Try out the new App registrations search prev

@ starting June 30th, 2020 we will no longer ad
will no longer provide feature updates. Appli

All applications

'/'3 Start typing a name or Application 1D to filt

“ CIVINTTRVEEVESEVITRIY)

abhi2810

my-app-2021-java
n Java-webapi
n java_webapp

Webapp-Openidconnect

n secured-easyapi
H secured-easyspa

funcloggingdemo

Owned applications

funcauthdemo10

Figure 12-15. Go to “App registrations”

Click the “API permissions” tab and then click “Add a permission.” See Figure 12-16.

303

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

- funcauthdemo10 | API permissions =

|,U Search (Ctrl+/) l « () Refresh & Got feedback?

. ;
i Overview

& Quickstart
0 The "Admin consent required" column

Integration assistant organizations where this app will be us
Manage i L
Configured permissions
Brnding Applications are authorized to call APls wh
3 Authentication all the permissions the application needs. ||
Certificates & secrets |- Add a permission] ~/ Grant admin

e 3 .
I' Token configuration API / Permissions name

- APl permissions| No permissions added

Figure 12-16. Click “Add a permission”

Provide all the necessary permissions as listed in Figure 12-17 and click “Grant
admin consent for Default Directory.”

Configured permissions

Applications are authorized to call APls when they are granted permissions by users/admins as part of the co
all the permissions the application needs. Learn more about permissions and consent

I+ Add a permission IIJ Grant admin consent for Default Dlrectoryl

API / Permissions name Type Description

~ Microsoft Graph (7)

Directory.AccessAsUser All Delegated Access directory as the signed in user
Directory.Read.All Delegated Read directory data

IdentityUserFlow.Read All Delegated Read all identity user flows

RoleManagement.Read All Delegated Read role management data for all RBAC providers

RoleManagement.Read Directe Delegated Read directory RBAC settings
User.Read Delegated Sign in and read user profile

User.Read All Delegated Read all users’ full profiles

Figure 12-17. Add all the permissions and grant admin consent

You will authorize all users who have the role of application developer. Let’s go to the
Users tab in Azure Active Directory. See Figure 12-18.

304

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

@ Default Directory | Overview

Azure Active Directory

&« @ Switchtenant [l Delete te

© Overview =
¥/ Getting started

0 Azure Active Directory can helg
— .

K& Preview features

Diagnose and solve problems

Default Directory

Manage

£ Search your tenant
£a Groups } Tenant information

Figure 12-18. Go to the Users tab

Click the user you will be logging in as. You can choose to use the user you are signed
in as in the Azure portal. See Figure 12-19.

@ Users | All users (Preview)

B8 pefaur Directory - Azure Active Directory

«
-+ Newuser -+ New guest user

[]

aa All users (Preview)

0 This page includes previews avail3

[]

aa Deleted users (Preview)

Password reset =
2 Search users

£ User settings 3 users found

#. Diagnose and solve problems Name T u

Activity D @ abhisekmisra al

2 Ssign-ins OJ Admin Teams aq
E Auditlogs r] Test User tel

% Bulk operation results

Figure 12-19. Click the user

Click the Assigned Roles tab. This action will list all the roles assigned to the user.
Click “Add assignments” and add the “Application developer” role. Once the role gets
added, click the “Application developer” role in the user’s list of roles. This action will
navigate you to the role details. See Figure 12-20.

305

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

& Test User | Assigned roles

User

« 4 Add assignments () Refresh
#. Diagnose and solve problems

Administrative roles

Manage
Administrative roles can be used to gr.

aa Profile

A Search by name or description
I.ﬁ‘ Assigned roles I '

.]) Role
& Administrative units

Application developer

ad Groups

i Applications

1] -
4 Licenses

Figure 12-20. Assign a role to the user

Click the Description tab and copy the template ID. You will use this in the Graph API
call in your function’s code to pull out all the users assigned that role. See Figure 12-21.

R Application developer | Description

All roles

« 0 Got feedback?

Diagnose and sclve problems

Manage Summary

4B Assignments

Mame: Application developer

Description: Users in this role will cof
Activity can register apps”.
% Bulk operation results Template ID: —a
Troubleshooting + Support Related articles: Assigning administratd

& New support request

Figure 12-21. Copy the template ID for the role

306

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Now let’s go back to the Azure function you created earlier. You need to add the
necessary code to enable authorization. You can add authorization using the NuGet
package Microsoft.IdentityModel.Clients.ActiveDirectory. To add a NuGet
package to the function script, you need to create a function.proj file in the root folder
of the function and add the package reference for this NuGet package. You can add a
new file using the App Service Editor. Click the App Service Editor tab and then click Go.
See Figure 12-22.

¢/, funcauthdemo10 | App Service Editor (Preview)

Function App
A2 Search (Ctrl+/) «

-

X Advanced Tools \ / ~ App Service Editor (Preview)

I S WS T (Prewew)l App Service Editor provides an in-browser editing

1] Extensions

API

+ APl Management

Figure 12-22. Go to the App Service Editor

Right-click the folder with your function name and then click New File. See
Figure 12-23.

307

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

/A APl permissions - Microsoft Azui X | A funcauthdemo10 - Micrd

C @ https://funcauthdemo10.scm.azurewebsites,

f > App Service Editor | funcauthdemo10 «

D\I EXPLORE O Th

4 WORKING FILES

,O 4 WWWROOT
(

S New File
B functionjson

readme.md New Faolder 4
run.csx ¥
Upload Files
host.json

@ Find in Folder
©

_, 10
Rename 2

® “
: Delete Delete fO!

<h.
pr

Figure 12-23. Create the Function.proj file

Provide the name of the file as Function.proj. Copy the code shown in Listing 12-1
in the Function.proj file, as shown in Listing 12-1. It will get autosaved.

Listing 12-1. Function.proj Code

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFramework>netstandard2.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.IdentityModel.Clients.
ActiveDirectory" Version="5.2.9" />
</ItemGroup>
</Project>

308

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

Now let’s go to the Azure function code in the run.csx file and replace the existing
code with the code shown in Listing 12-2. Here you are getting the identity of the logged-
in user. Then, from the identity, you are extracting the username for the logged-in user.
You are invoking the Microsoft Graph API and fetching all the assigned users with the
“Application developer” role. The Microsoft Graph API exposes a set of REST APIs that
will help you work with data on Microsoft Cloud services like Microsoft 365, Azure Active
Directory, and many more. You can fetch and work on data about the users in Azure
Active Directory or get data from Microsoft 365 services such as OneDrive or Calendar
or Outlook and many more. If the logged-in user’s username is found in the list returned
by the Microsoft Graph API call, you will authorize the user and return the text “Hello
World!” If the user is not there in the list returned by the Microsoft Graph API call, you are
sending back the “Not Authorized” text. Make sure you replace {RoleTemplateId} with
the template ID you copied for the “Application developer” role in the Description tab of
that role earlier.

Listing 12-2. Function Code with Authorization Enabled
#r "Newtonsoft.Json"

using System.Net;

using System.Text;

using System.Configuration;

using System.Security.Claims;

using System.Net.Http;

using System.Net.Http.Headers;

using Newtonsoft.Json;

using Microsoft.IdentityModel.Clients.ActiveDirectory;
using Microsoft.AspNetCore.Mvc;

public static async Task<IActionResult > Run(
HttpRequest req,
ILogger log)

// Get identity for logged in user

var identity = req.HttpContext?.User?.Identity as ClaimsIdentity;
var claims = identity.Claims;

var roleClaimType = identity.RoleClaimType;

309

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

var roles = claims.Where(c => c.Type == roleClaimType).Tolist();

log.LogInformation(roles.Count.ToString());

log.LogInformation("IsAuthenticated: {isAuthenticated}",identity?.

IsAuthenticated);

log.LogInformation("Identity name: {name}",identity?.Name);

log.LogInformation("AuthenticationType: {authenticationType}",
identity?.AuthenticationType);

var userName = "";
foreach (var claim in identity?.Claims)
{

log.LogInformation("Claim: {type} : {value}", claim.Type,
claim.Value);

//Get logged in user name

if(claim.Type == "preferred username")

{

userName = claim.Value;

}

var accessToken = req.Headers.SingleOrDefault(h => h.Key == "X-MS-
TOKEN-AAD-ACCESS-TOKEN").Value;
log.LogInformation(accessToken);

// Call the graph API to get all the users having Role : Application
Developer

// Provide the template id for the Role that we have copied from the
Role Description

// in Azure Active Directory

string graphRequest = $"https://graph.microsoft.com/v1.0/

directoryRoles/roleTemplateId=cf1c38e5-3621-4004-a7cb-879624dced7c/

members";

var authHeader = "Bearer " + accessToken;
HttpClient client = new HttpClient();

client.DefaultRequestHeaders.TryAddwWithoutValidation("Authorization",
authHeader);
var response = await client.GetAsync(new Uri(graphRequest));

310

}

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

string content = await response.Content.ReadAsStringAsync();
log.LogInformation(content);

// Deserialize the JSON string into Root object
Root myDeserializedClass = JsonConvert.DeserializeObject<Root>(content);

// Loop through all the values returned by Graph API
// Verify if the logged-in username is there in the list
foreach(Value value in myDeserializedClass.Value)

{
log.LogInformation(value.UserPrincipalName);
//check if the user name returned matches with the logged
//in username
if(value.UserPrincipalName == userName)
{
return new OkObjectResult("Hello World");
}
}

return new OkObjectResult("Not Authorized");

public class Value

{
[IsonProperty("@odata.type")]

public string OdataType { get; set; }

[IsonProperty("id")]
public string Id { get; set; }

[IsonProperty("businessPhones™)]
public List<object> BusinessPhones { get; set; }

[IsonProperty("displayName")]
public string DisplayName { get; set; }

[IsonProperty("givenName")]
public object GivenName { get; set; }

311

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

[JsonProperty("jobTitle")]
public object JobTitle { get; set; }

[JsonProperty("mail")]
public object Mail { get; set; }

[IsonProperty("mobilePhone")]

public object MobilePhone { get; set; }
[IsonProperty("officelLocation™)]

public object OfficelLocation { get; set; }

[IsonProperty("preferredLanguage”)]
public object PreferredlLanguage { get; set; }

[IsonProperty("surname")]
public object Surname { get; set; }

[IsonProperty("userPrincipalName")]
public string UserPrincipalName { get; set; }

}

public class Root

{
[IsonProperty("@odata.context™)]
public string OdataContext { get; set; }
[IsonProperty("value")]
public List<Value> Value { get; set; }

}

Summary

In this chapter, you learned how to enable authentication and authorization for Azure
Functions using Azure Active Directory. You explored Azure Active Directory and its
offerings at a very high level. You learned the basic concepts of authentication and
authorization. You then registered an application in Azure Active Directory from

the Authentication tab of an Azure function and then enabled authentication and
authorization for the Azure function with ease.

312

CHAPTER 12 AUTHENTICATION AND AUTHORIZATION USING AZURE ACTIVE DIRECTORY

The following are the key takeaways from this chapter:

Azure Active Directory is a multitenant identity and access
management system on the Azure platform.

Authentication verifies who the user is, and authorization dictates
what the user can do.

You can enable authentication with just a few clicks in the
Authentication tab of an Azure function.

Enabling authentication creates an app registration in Azure Active
Directory.

We can use Graph APIs to get the logged-in roles for the user.

In the next chapter, you will explore how to integrate the API Management service

with Azure Functions and build a secure and robust API service using Azure Functions.

313

CHAPTER 13

Securing Azure Functions
with APl Management

You can build APIs using HTTP-triggered Azure functions. These APIs interact with

the databases and perform CRUD operations. You need to have granular control over
the incoming requests and outgoing responses for the APIs developed using Azure
Functions. It is highly essential to secure these APIs and control the header, body,

and other necessary aspects for the API calls. You should be able to control who can
consume these APIs, and only the subscribed developers should have access to them.
All these requirements can be achieved by integrating the API Management service
with HTTP-triggered Azure functions. All requests and responses to an HTTP-triggered
Azure function should pass through the API Management service. You can control these
requests and responses at a granular level using API Management.

In the previous chapter, you learned how to secure HTTP-triggered Azure functions
using Azure Active Directory. In this chapter, you will learn how to gain granular control
over the requests and responses for the HTTP-triggered Azure functions using the API
Management service.

Structure of the Chapter

In this chapter, you will explore the following aspects of Azure Functions and Azure API
Management:

e What Azure API Management is
o Advantages of using API Management

o Integrating API Management with Azure Functions

315
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_13

https://doi.org/10.1007/978-1-4842-7122-3_13#DOI

CHAPTER 13 SECURING AZURE FUNCTIONS WITH APl MANAGEMENT

Objectives

After studying this chapter, you will be able to do the following:
e Understand the API Management service

o Integrate the API Management service with Azure Functions

What Is the API Management Service?

The API Management service helps you create robust API gateways that can host
back-end APIs. It helps you gain granular control over the requests and responses of

the back-end APIs. Developers who want to consume your API can request the APIs
subscriptions, and the API Management service administrator or the owner can approve
these requests. Once the request is approved, the developers can use the APIs. You can
version your APIs and expose these APIs as multiple versions using the API Management
service. The developers and consumers can subscribe to the version as per their
requirements.

The API Management service exposes a developer portal where the developers can
discover the service they need and get the API documentation. The developers can raise
subscription requests for the APIs in the developer portal. The developer portal is fully
customizable, and the look and feel can be modified based on your needs.

Different units or project teams can develop the APIs in your organization. You can
use the API Management service to manage and expose these APIs centrally. You can
modify the incoming requests and outgoing responses for the APIs. For example, modify
the response body, check if the JWT security token is in the request header, or add a
query string parameter to the request.

You can use Azure HTTP-triggered functions and the API Management service to
build microservices-based APIs.

Advantages of Using the APl Management Service

The following are a few of the advantages of using the API Management service:

o Central hosting of APIs built by different teams using different
choices of technology.

316

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

o Exposing the APIs as subscriptions and versions for the developers/
consumers to subscribe to and consume.

o Each of the hosted APIs can scale independently and will be
warranted from failures of other APIs.

e Provides an excellent mechanism to manage the back-end services
and get granular control over API requests and responses.

o Enhanced security of back-end APIs.

o Itprovides a developer portal that helps in the discovery, description,
and subscription of APIs.

Integrate APl Management with Azure Functions

Let’s create an HTTP-triggered Azure function and integrate it with the API Management
service. Open the Azure portal and click “Create a resource.” See Figure 13-1.

Azure services

=|= (%) 3

Create a Resource Azure Active
resource groups Directory

Figure 13-1. Click “Create a resource”

Click Compute and then click Function App. See Figure 13-2.

317

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Azure Marketplace Seeall Featured Seeall

Get started r Virtual machine
Learn more

Recently created

Al + Machine Learning Virtual machine scalg
] Learn more
Analytics
Blockchain Kubernetes Service
I Compute I Quickstarts + tutorials
Containers)
Function App
Databases <’> Quickstarts + tutorials

Figure 13-2. Click Function App

Provide the basic details for the function. Let’s select .NET and 3.1 as the runtime
stack and the version. Click “Review + create.” See Figure 13-3.

318

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Create Function App

Create a function app, which lets you group functions as a logical unit for easier manage
of resources. Functions lets you execute your code in a serverless environment without h)
publish a web application.

Project Details

Select a subscription to manage deployed resources and costs. Use resource groups like
all your resources.

Subscription * @ I

Resource Group * O | rg-book

Create new

Instance Details

Function App name * [funcapim ll
Publish * I @ Code O Docker Container I
Runtime stack * | NET

Version * 31

Region * | East US

< Previous [Next : Hosting >

Figure 13-3. Provide basic details for the Azure functions

Click Create. See Figure 13-4.

319

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Basics Hosting Monitoring Tags Review + create
Summary
+.~, Function App
by Microsoft
Details
Subscription I
Resource Group rg-book
Name funcapim
Runtime stack NET 3.1
Hosting
Storage (New)
Storage account storageaccountrgboo9ffe
Plan (New)
Plan type Consumption (Serverless)
Name ASP-rgbook-9675
Operating System Windows
< Previous | Next > Download a temp

Figure 13-4. Click Create

Go to the Azure function app once it has been created. Now you need to add a
function to the Azure function app. Click the Functions tab and click Add. See Figure 13-5.

320

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

(£ funcapim | Functions

Function App

‘)’3 Search (Ctrl+/) l « + add | (D Refresh

-

> Qverview

|,C Filter by name...

B Activity log
pp\ Access control (IAM)
Name T
¢ Tags
No results.

& Diagnose and solve problems
@ Security

Events (preview)

Functions
1} Functions

App keys

Figure 13-5. Add a function

Select “Http trigger” and click Add. See Figure 13-6.

321

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Add function

Select development environment
Instructions will vary based on your development environment. Learn more

Development environment | & Develop in portal v

Select a template

Use a template to create a function. Triggers describe the type of events thaf
your functions. Learn more

<7 Filter

Template Description

HTTP trigger A function that will be run whenever it receives an
request, responding based on data in the body or
string

Timer trigger A function that will be run on a specified schedule

Azure Queue Storage trigger A function that will be run whenever a message is 4
to a specified Azure Storage queue

Azure Service Bus Queue A function that will be run whenever a message is

trigger to a specified Service Bus queue

Azure Service Bus Topic A function that will be run whenever a message is

trigger to the specified Service Bus topic

PURI. — - - N L P i

[e |G

Figure 13-6. Select “Http trigger”

Once the function gets created, go into the function and click Code + Test.
See Figure 13-7.

322

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

HttpTrigger1 | Code

Function
£ Search (Ctrl+/) «

] Overview

Developer

Code + Test

Integration
& Monitor

Function Keys

Figure 13-7. Click Code + Test

You can see that the code in Listing 13-1 is generated by default. You can pass the

name parameter and its value in the query string, and the function will return the value

you passed in the name parameter. If you do not pass the name parameter in the query

string, it will return a message asking you to pass the name parameter with a value in the

query string.

Listing 13-1. Function.proj Code

#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{

log.LogInformation("C# HTTP trigger function processed a request.");
string name = req.Query["name"];

string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject(requestBody);
name = name ?? data?.name;

323

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

string responseMessage = string.IsNullOrEmpty(name)

? "This HTTP triggered function executed successfully. Pass a name in

the query string or in the request body for a personalized response."

: $"Hello, {name}. This HTTP triggered function executed successfully.";
return new OkObjectResult(responseMessage);

Now let’s create the API Management service. Go to the Azure portal and click
“Create a resource.” See Figure 13-8.

Azure services

+ (%) >

Create a Resource Azure Active
resource groups Directory

Figure 13-8. Click “Create a resource”

Click the Integration tab and then APT Management. See Figure 13-9.

New

2 Search the Marketplace

Azure Marketplace Seeall Featured Seeall

Get started (& Logic App
Quickstarts = tutorials
Recently created

Al + Machine Learning APl Management

. Quickstarts + tutorials
Analytics
Blockchain Service Bus
Compute Quickstarts + tutorials
Containers .

Integration Account

Databases ==. Quickstarts + tutorials

Developer Tools
Integration Service Environment
DevOps Learn more

Identity

Integration .3 Logic Apps Custom Connector

Learn more

Figure 13-9. Click API Management
324

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Provide the subscription details, resource group, name of the API Management
service, location where you need to create the service, and other necessary details. Select
“Developer (no SLA)” for “Pricing tier” Click “Review + create” and then click Create on

the subsequent screen. See Figure 13-10.

Create APl Management

Project details

Select the subscription to manage deployed resources and costs. Use resource group:
manage all your resources.

Subscription * @ |
Resource group * (@ [rg-book
Create new

Instance details

Region * @ | EastUS

Resource name * [test28-1

Organization name * (O | Test

Administrator email * © | I @ 2hoo.com

Pricing tier

APl Management pricing tiers vary in computing capacity per unit and the offered fea
virtual networks, multi-regional deployments, or self-hosted gateways. To accommod
adding APl Management service units instead.

Learn more

Pricing tier @O Developer (no SLA)

Review + create | < Previous Next : Monitoring >

Figure 13-10. Click Review + create

Once the API Management service gets created, navigate to the service in the portal.
Click the APIs tab. See Figure 13-11.

325

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

) test28-1 | APIs

APl Management service

. L Search (Ctrl+/)

2 QOverview

Activity log

A Access control (IAM)
< Tags

¢ Diagnose and solve problems

Settings
iI' Properties

8 Locks

APIls

<) APls

WY Products

Figure 13-11. Go to the APIs tab

Select the function app on the APIs tab. You will be configuring the back-end service
as the function app that you created earlier. See Figure 13-12.

326

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Create from definition

OpenhPl WADL
Standard, language-agnostic Standard XML representation of
interface to REST APIs your RESTRul API

Create from Azure resource

Logic App App Service
Scalable hybrid integrations and APl hosted on App Service.
workflows.

<[>

WsDL

Standard XML representation of
your SOAP AP|

Function App

Serverless, event driven
experience on App Service.

Figure 13-12. Select Function App

Now you need to select the function that you need to integrate with the API

Management service. Click Browse. See Figure 13-13.

Create from Function App

Base URL
https://test28-1.azure-api.net

Basic | Full
* Function App . Please select Function App ! I Browse J I
* Display name e.q. Hitp Bin
* MName ' e.g. httpbin
APIURL suffix e.g. httpbin

Cancel

Figure 13-13. Click Browse

327

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Click Function App. See Figure 13-14.

Import Azure Functions

APl Management service

o Don't see an Azure Function? Azure APl Management require

*Function App

Configure required settings

[/O Search to filter items...
[:] Name

Mo results

Figure 13-14. Click Function App

Select the function app that you need to configure as a back-end service.
See Figure 13-15.

328

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Select Azure Function App

APl Management service

I}: Search to filter items...

MName Resource group Location
apidemofunc rg-book-1 East US
demofuncbinding rg-funcdemo East US
func2810 rg-apress East US

I funcapim rg-book East US I
funcauthdemo10 rg-book East US
funcdemo2810 rg-logicapp East US
funcloggingdemo rg-book Central US
funcmulticloud4u rg_logicapp_demo East US
HandsOnAzureFunction01 HandsOnAzureFunction East US

Figure 13-15. Select Function App

Select the function in the selected function app that you need to expose as a back-
end service. Click Select. See Figure 13-16.

329

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

Import Azure Functions

APl Management service

o Don't see an Azure Function? Azure API Management requires Azure Functio|

*Function App

funcapim

£ Search to filter items...
Name

HttpTrigger1

Figure 13-16. Select the function to expose as the back-end service

Provide the display name and name for the back-end service and then click Create.
See Figure 13-17.

330

CHAPTER 13

SECURING AZURE FUNCTIONS WITH APl MANAGEMENT

Create from Function App

Basic | Full

* Function App | funcapim

funcapim

* Display name

* Name I funcapim I
APl URL suffix funcapim
Base URL

https://test28-1.azure-api.net

Cancel

Figure 13-17. Create the back-end service

Go to the API back end that you created and then click “Add policy.” See Figure 13-18.

CREATED Apr 18, 2027, T40:19 PM s
|/D Search APls
|? Filter by tags Design Settings Test Revisions Change log
Group by tag
| £ Search aperations =
Frontend Modify the request before it is
—+ Add API |? Filter by tags 4 sent to the backend senace.
Group by tag
All APIs Policies i
-+ Add operation - -
Echo AP base
All operations
funcapim -+ Add policy
GeT HttpTriggerl
posT HitpTriggerl _— =
Qutbound processing
Modify the response before it
is sent to the client.
&
Policies <>
base
Operations Definitions -
Figure 13-18. Add a policy

331

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

You can set a query parameter called name and provide a default value in the

incoming request if the user has not provided the name parameter. If the user has

provided the name parameter in the request, it will skip adding the query parameter. See

Figure 13-19.

m CREATED Apr 18, 2021, 7:40:19 PM ™.~

Design Settings Test Revisions

I ,D Search cperations l
|? Filter by tags I
| Group by tag

- Add cperation

All operations

Change log

Filter IP addresses

ip-filter

Set filtering of incoming requests
based on allowed or blocked IP
addresses.

Learn more

GET HttpTriggerl —

posT HttpTriggerl

Set query parameters

|set-query-parameter

Add, remove or change the query
parameters that are passed to the
backend service,

Learn more

Limit call rate

rate-limit-by-key

Set rate limit pelicy te contral the
number of requests reaching the
backend service.

Learn more

Set headers

Set policy to add, remeve or
change headers that are passed to
the backend service,

Learn more

Mock responses

mock-response

Set mocking policy to return a
response based on the defined
samples, rather than by calling the
backend service.

Learn more

Allow cross-origin
resource sharing (CORS)

cors

Set CORS policy to allow cross-
domain calls from browser-based
clients.

Learn more

Figure 13-19. Set a policy for query parameters

Add the query parameter name and provide a default value instead of Default Name.

Set the action to “skip” so as not to override the name parameter passed by the user. Click

Save. See Figure 13-20.

332

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

funcapim > All operations > Policies

Inbound processing

Modify the request before it is sent to the backend service.

Set query parameters
Add, remove or change the query parameters that are passed to the backend service.

Learn more about “set-query-parameter” policy.

NAME VALUE ACTION
name Default Name skip |
—+ Add parameter
Save Discard

Figure 13-20. Provide the query parameter to add to the request

Now let’s test the API Management service that you configured. Go to the Test tab.
Select the Get method and click Send. See Figure 13-21.

333

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

W CREATED Apr 18, 2021, 7:40:19 PM .~

Design Settings Test Revisions Change log
: /O Search operations | funcapim > HttpTrigger1 > Console
? Filter by tags |
. HttpTriggerT
GET HttpTriggerl s Query parameters
NAME VALUE TYPE DESCRIPTION

posT HttpTriggerl

—+ Add parameter

Headers
MNAME VALUE TYPE DESCRIPTION
- Add header
Apply product scope
No products

| | Bypass CORS proxy @

Figure 13-21. Send a request to the API Management service without a query
parameter

You are not passing any query string parameter here. The API Management service
will add the name parameter with the value Default Name in the request, and you get
back the Default Name in the response. See Figure 13-22.

334

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

funcapim > HttpTrigger1 > Console

HTTP response

Message Trace

HTTP/1.1 200 OK

content-encoding: gzip

content-type: text/plain; charset=utf-g8

date: Sun, 18 Apr 2021 14:25:51 GMT

ocp-apim-apiid: funcapim

ocp-apim-operationid: get-httptriggerl

ocp-apim-subscriptionid: master

ocp-apim-trace-location: https://apimstrkvhith77urwoeqvgz.blob.core.windg
VfPQRaAAUemQ2-1?sv=2019-87-87&sr=b&sig=pBx5Iuesk2BTIX2BRds60pVIWk2Fyi1Tpy
S%3A5@Z&sp=r&traceld=3230434ad68c4d3bal4@57b91e838b20

request-context: appld=cid-v1:2973c2de-466e-4202-blda-669d791d814a
transfer-encoding: chunked

vary: Accept-Encoding,Origin
IHellc, Default Name.lThis HTTP triggered function executed successfully.

Bypass CORS proxy @

Figure 13-22. Response from the API Management service

Now let’s add a query string name with a value. Click Send. See Figure 13-23.

335

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

m CREATED Apr 18, 2021, 7:40:19 PM ./

Design Settings Test Revisions Change log
|,O Search operations | funcapim > HttpTrigger1 > Console
|V Filter by tags |
crowp bias HttpTrigger1
GET HttpTrigger1 ess Query parameters
NAME VALUE TYPE

posT HttpTrigger1

name Abhishek ktring

-+ Add parameter

Headers
NAME VALUE TYPE

-+ Add header

Apply product scope

Bypass CORS proxy @

Figure 13-23. Provide the query parameter in the request

The value in the name parameter does not get overridden by the API Management
service, and you get back the value that you sent in the parameter name. See Figure 13-24.

336

CHAPTER 13 SECURING AZURE FUNCTIONS WITH API MANAGEMENT

HTTP response

Message Trace

HTTP/1.1 280 OK

content-encoding: gzip

content-type: text/plain; charset=utf-8

date: Sun, 18 Apr 2021 14:32:35 GMT

ocp-apim-apiid: funcapim

ocp-apim-operationid: get-httptriggerl

ocp-apim-subscriptionid: master

ocp-apim-trace-location: https://apimstrkvhith77urwceqvgz.blob.core.windo
VfPQRaAAUemQ2-225v=2019-07-07&sr=b&sig=mdmSvYRVKFiugh6K172ytm811iL6WVxoge
Z&sp=r&traceld=7ab24cded1d7443cb7cd5bdaf@daecsd

request-context: appIld=cid-v1:2973c2de-466e-4262-blda-669d791d814a
transfer-encoding: chunked

vary: Accept-Encoding,Origin
Hello, Abhishek.]This HTTP triggered function executed successfully.

Figure 13-24. Response from the API Management service

Summary

In this chapter, you learned how to configure an HTTP-triggered Azure function as
a back-end API for the Azure API Management service. You explored the Azure API
Management service and its offerings at a very high level. You learned how to control the
requests and response for an API configured as a back-end API for the API Management
service. You added a policy to add a query parameter for the incoming requests in the
API Management service.

The following are the key takeaways from this chapter:

o The API Management service helps you control the incoming
requests and outgoing responses for HTTP-triggered Azure functions
configured as the back-end APIs at a granular level.

o Itenhances the security of Azure functions.

337

CHAPTER 13 SECURING AZURE FUNCTIONS WITH APl MANAGEMENT

o The API Management service exposes a developer portal where the
developers can discover the service they need, subscribe to it, and get
the API documentation.

e You can use Azure HTTP-triggered functions and the API
Management service to build microservices-based APIs.

In the next chapter, you will explore how to deploy function code to Azure functions
using editors such as Visual Studio IDE and Visual Studio Code.

338

CHAPTER 14

Deploying Your Azure
Functions Using IDEs

In the previous chapters, we discussed ways to build serverless solutions using various
triggers and bindings to solve real-world problems. You studied how to store application
secrets and configurations using Azure Key Vault and ways to monitor your functions
using Application Insights and Azure Monitor. All these things are quite essential to
building great solutions, but we have not covered an essential part yet, which is how to
deploy these solutions in Azure.

As the name of the chapter suggests, the focus of this chapter will be to deploy your
Azure functions using an integrated development environment (IDE). As mentioned,
you can develop Azure functions using IDEs such as Visual Studio and VS Code, and you
will be leveraging them to deploy the functions to Azure. Later in this book you will look
at ways to deploy functions in containers and use Azure DevOps to deliver automated
deployments of your Azure functions.

Structure of the Chapter

This chapter will explore the following aspects of HTTP triggers and Azure SQL:
o Deploying an Azure function to Azure using Visual Studio 2019

e Deploying an Azure function to a deployment slot using
Visual Studio 2019

e Deploying an Azure function using VS Code

339
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_14

https://doi.org/10.1007/978-1-4842-7122-3_14#DOI

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Objective

After studying this chapter, you will be able to do the following:

o Deploy Azure functions using IDEs

o Work with deployment slots

Deploy an Azure Function to Azure Using Visual

Studio 2019

Open Visual Studio 2019, and click “Create a new project.” See Figure 14-1.

Visual Studio 2019

Open recent

I P

4 This week

m BlobStorage.sin
CAUsers\Ashirwad Satapathi\source\repos\BlobStorage

4/22/2021 10:22 AM

4 This month

m FeedbackAnalyzersin

D:\FeedbackAnalyzer

472172021 5:54 AM

NI_—l TestMessageSender.sin 4/18/202112:11 PM
D:\TestMessageSender

m loTHubMessageSendersin ~ 4/19/202112:08 P\
D\l THubMessageSender

m lotHubTriggersin 4/19/2021 10:41 AM

D:\letHubTrigger

Figure 14-1. Create a new project

340

Get started

€% Connect to a codespace

Create and manage cloud-powered development
environments

¥ Clone a repository

Get code from an online repository like GitHub or
Azure DevOps

"@ Open a project or solution

Open a local Visual Studio project or sin file

- Open a local folder

Mavigate and edit code within any folder

Create a new project

Choose a project template with code scaffolding
to get started

c5

Continue without code =

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Select Azure Functions as the project template and click Next. See Figure 14-2.

Create a new

. Search for templates (Alt+5) 2~
Clear all
project
Cc= - Azure - Cloud -
Recent project templates
< >3 Azure Functions =

B C e Ansileat =z A template to create an Azure Function project.
onscle Apphication

= Azure Cloud

B Consele App (NET

Framework) = Q Service Fabric Application
A project template for creating an always-on, scalable, distributed application with
» Azure Functions s Microseft Azure Service Fabric.
c* Azure Cloud
] gls)r.NET Core Web o . .
O Azure Cloud Service (classic)
e R A project for creating a scalable service that runs on Microsoft Azure.
o ce
Group ¢ Azure Cloud
=i ;V:;d{o::;mm; e Q Azure Resource Group
Framéwor‘k] This template creates an Azure Resource Group deployment project. The deployment
preject will contain artifacts needed to provision Azure resources using Azure
) F Resource Manager that will create an environment for your application.
= Mebile App ¥

(Xamarin.Forms) <] Azure Cloud

-

Figure 14-2. Select the project template

Enter the project name, location, and solution name. After you fill them in, click
Create. See Figure 14-3.

341

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Configure your new project

Azure Functions ¢= Azre Cloud

Project name

I FunctionAppDeploy I

Location

I CA\Users\Ashirwad Satapathi\source\repos - I

Selution name)

IFundiamﬂppDeploy I

|:| Place solution and project in the same directory

Back Create

Figure 14-3. Click Create

Select the “Http trigger” type, set Azure Functions V3 as the function runtime, and
select Anonymous as the authentication level. Click Create. See Figure 14-4.

342

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Create a new Azure Functions application

Azure Functions v3 (.NET Core)

A C# function that will be run whenever an event hub receives a new event

Http trigger

A C# function that will be run whenever it receives an HTTP request

Storage account (AzureWeblobsStorage)
Storage emulator -

Seme capabilities may require an Azure storage
account,

loT Hub trigger

A C# function that will be run whenever an iot hub receives a new event on the event hub
endpoint.

<’> Kafka output

A C# function that will send 2 message te a specified Kafka Topic

Kafka trigger

A C# function that will be run whenever a message is added to a specified Kafka Topic

Queue trigger

A C# function that will be run whenever 2 message is added to a specified Azure Queue Storage

RabhitMQ trigger

Updates are ready Refresh

Figure 14-4. Provide the template details

ization level

Anonymous ‘ 'I

[ensble Open Api Support

Visual Studio will generate an Azure function named Functionl with some

boilerplate code to return a message as the response. Since you want to deploy your

function project to Azure, click the “Sign in” button in case you haven’t signed into

Visual Studio with an account that has a valid Azure subscription. As you can see from

Figure 14-5, we have already logged into Visual Studio.

343

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

D Fle Edit View Gt Project Buld Debug Test Anahme Tools Extensions Windew Help Search (CuleQ) £ FunctionfppDaploy - B8 x
[P Debug = Any CPU *| b FunctionfppDeploy - 4 @ . WM =% M Iﬁ ashirwad satapathi 1 LiveShare T
Y “ax F
2 B FunctionApaDeploy -1 * FunctienagpDeploy.Functicnl -[® Run(tpRequest req Logger -I Account seltings.. EWIE 2
b3 7 using Microsoft.Extensions. Logging; m—— e e 2
5 a using Mewtonsoft.Json; Search Solution Explorer (Cirle) el
il g : (3] Seluticn FunctionAppDeplay’ (1 of 1 project)
F 18 “namespace FunctionfppDeploy 4 @] FunctionAppDeploy
i 11 { b Dependencies
g 3 rerences > @ Propestes
g 12 2 public static class Functionl i 2] -gRignore
13 { B Functionl.cs
14 jontane{"Function1™}] LT nonjsen
3 T lecal settings.jeon
15 static async Task¢TActionResult> Run(
16 [HttpTrigger(AuthorizationLevel.Anonymous, “get™, ~“post™, Route = null)] HttpRequest req,
17 = ILagger log) 1
18 i
19 log.LogInformation{"C# HTTP trigger function processed a request.”);
2
21 string nase = req.Query[“name”];
2
23 string requestBody = await new StreamReader(req.Body).ReadToEndasync();
24 dynamic data = JsonConvert.Deserializedbject(requestBody);
25 name = nase 2} datal.name;
26
27 string responseMessage = string.IsMullOrEapty(name)
28 ? "This HTTR triggered function executed successfully, Pass a name in the query string or i
29 ¢ §"Hello, {name#}. This HTTP triggered function executed successfully.”;
e
58 return new OkObjectResult{responseMessage);
2 }
« [y
34 L}
s
6 =,
WES - © Noisuss Tound Fr 4 P k12 O34 SPC CRIF | LiveSh_ Sohutio.. TeamE. Matific.. GitCh_

Web Publsh Activity Ererlist Output Package Manager Console

Figure 14-5. Sign in to Visual Studio

To deploy the function present in your solution to your Azure subscription,

right-click FunctionAppDeploy Project and click Publish. See Figure 14-6.

Run(HttpRequest req, ILogger log)

Ml Solution Explorer -~ § x|
d ls @A o-5Fm K=

Search Solution Explorer (Ctrl+;)

& FunctionAppDeploy

¥ Build Dependencies
Rebuild Properties
Clean .gttlgrfore

Functionl.cs

Analyze and Code Cleanup » hostjson
Pack local.settings.json

& Publish...

Rou

Scope to This

E':l:J MNew Sclution Explorer View

FeqUE &> Edit Project File

Figure 14-6. Click Publish

344

saipadoig

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

You will see a pop-up screen with various target options to deploy your function
project. Select Azure as the target and click Next. See Figure 14-7.

Publish

Where are you publishing today?

Target / Azure
.s Publish your application to the Microsoft cloud

I, Docker Container Registry
' Publish your application to any supported Container Registry that works with Docker images

Folder
Publish your application to a local folder or file share

Q Import Profile
Import your publish settings to deploy your app

Figure 14-7. Select Azure as the target

Select Azure Function App (Windows) as the specific target and click Next. See
Figure 14-8.

345

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Publish
Which Azure service would you like to use to host your application?
Target 4> Azure Function App (Windows)
Publish your application code to a serverless compute that scales dynamically and runs code on-
Specific target demand

&> Azure Function App (Linux)
Publish your application code to a serverless compute that scales dynamically and runs code on-
demand

<> Azure Function App Container
Publish your application as a Docker image to Azure Container Registry and run it on Azure Function
App

Azure Container Registry
Ml Publish your application as a Docker image to Azure Container Registry

Back Finish . Cancel

Figure 14-8. Select the specific target

Select the subscription name and select the view as resource group. Since you
don’t have any existing function app in your subscription, let’s click + as highlighted in
Figure 14-9 to create a function app.

346

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

X
Publish @ codewithashirwad
Select existing or create a new Azure Function
Subscription name
Target
IAzure Pass - Spensership -I
Specific target View
Functions instance IResoulce group - I
Search
Function Apps E ¢

(Mo resources found)

Run from package file (recormmmended)

Back | Mext Finisk Cancel

Figure 14-9. Select the subscription and view

Enter the name of the function app, select the subscription where you want to create
this function app, choose the resource group, select Consumption as the plan type, select
the location where you want to create this function app, and select a storage account
or create a new one for the function app by clicking New. Once you have entered all
the required fields, click Create. Then Visual Studio will create a function app running
on a Consumption Plan inside the selected resource group and subscription in the
background. It is similar to creating a function app through the Azure portal. It usually
takes some minutes to provision all the resources. See Figure 14-10.

347

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

< > Function App (\N codewithashirwad .

Create new

Name

IFundionAppDeployChapter

Subscription name
IAzure Pass - Sponsorship .l

Resource group

rg-chapter-14* - Pew...

Plan Type

Consumption -

Location

South India -

Azure Storage

Istorageaccountchapter {East US) - I\Iew...

Export... . . Cancel

Figure 14-10. Create a new function app

Visual Studio will have selected the function app that you created in the previous
step. Click Finish to create a publish profile to deploy your function project to the newly
created function app. If you had any existing function apps, you could have deployed
your function app over there by selecting it in this step. See Figure 14-11.

348

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

X
H =\ codewithashirwad
PUthh ashirwad@codewithashirwad.o...
Select existing or create a new Azure Function
Subscripti
Torget ubscription name
IAzure Pass - Sponsorship N I
Specific target View
Functions instance IR“"“"':e group 'I
Search
I FunctionAppDeployChapter I
Function Apps + ¢

4 0 rg-chapter-14
4 (Consumption)

Deployment Slots

Run from package file (recommended)
Back | Next . Cancel
Figure 14-11. Click Finish

You need to click Publish to start the deployment process. In the settings section
of the Publish pane, you can see the configurations of your function app, including the
function app URL, resource group, and function app name. See Figure 14-12.

349

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

FunctionAppDeployChapter - Zip Deploy.pubxml = s
Connected Services <G> @, Publish
Azure Function App (Windows)

-+ New More actions =

‘ (i) Ready to publish. ‘

Settings
Configuration Release #
Target Runtime Portable #
Show all
Hosting
Subscription 1792d48-9723-40d4-2d81-db2024bf351F 3
Resource group rg-chapter-14
Resource name FunctienAppDeployChapter
User name SFunctionAppDeployChapter rd
Password o
ISit:: https://functionappdeploychapter. bsites.net (5] I

Figure 14-12. Click Publish

You can see the progress of your deployment in the Output window, as shown in
Figure 14-13.

Show output from: Buld - Em
Suhe storten

13- - Bulld started: Project: FunctionAppbeploy, Conflguration: Release Any CW
1>Fun(t.bn—pmpla)' -» Ci\Users\Ashirwad Satapathilscurce\repos\Funct:
EE Publish started: Project: FunctionApoDeploy, Configuration: Release Any CDU i
2sFunctiondppbeploy -> C:\Users\Ashirwad Satapathilscurce\reposiFuncti Functi in\Rel e\netcoreapp3. 1\Funct iondppDeploy.dll
2xFunctionAppbeplay -3 Ci\Users\Ashirwad Satagathilsource\reposy Functi obi\Releaselnetcoreapns. 1\PubTep\Outy

eapn3. 1\Funct: a1l

ployment succesded.
=== Build: 1 succeeced, @ falled, @ up-to-date, © skipped ==s=eseeee

2
- =e= Publish: 1 succeeded, 8 failed, @ skipged =sscsssess

4 3

Web Publish Activity Error List a:kageManlgtrCnnm:e
Figure 14-13. View the Output window
To test your function that you deployed using Visual Studio, you will have to go to the
Azure portal. Then go to the function app that you had created in Visual Studio and click

Functions in the sidebar menu, as highlighted in Figure 14-14. Here you will see the list
of all the functions deployed in this function app. Let’s click Functionl.

350

chtmitiraran S : = i \obj\Releass\netcoreappl. 1\PubTap' Funct i - 8248.7ip to bitosT

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Home > Resource groups > rg-chapter-14 > FunctionAppDeployChapter

(] FunctionAppDeployChapter | Functions

Function App

[.2 seareh icri+n] « 4 add O refresh | [Delete

& o
Cheniew A\ Your app is currently in read only mode because you are running from a package file, To make any changes update the content in your zi

- WEBSITE_RUN_FROM_PACKAGE app sstting.
Activity log

Access contrel (IAM)

Togs I/O Filter by name...

Diagnose and solve problems

@ % & X DO

E] Name T Trigger T4 Status Ty

O runer

Security
HTTP Enabled

Events (preview)

Functions

I il Functions I

i\ App keys
Figure 14-14. Click Functionl

You need to click the Get Function Url button to get the URL of Functionl. Copy the
URL shown in the dialog. See Figure 14-15.

Home > Resource groups > rg-chapter-14 > FunctionAppDeployChapter »

(£} Function1 2

Function

[£ search (ctri+n | « v/ Enable ble [:?.ulet.-C_) Refresh
) S Get Function Url
Developer default (function ... vll https:/ffunctionappdeploychapter.azurewebsites.net/api/Function1? tl
B Code + Test “
* Integration
Status : Enabled
@ monitor Resource group (change) : rg-chapter-14
Function Keys Subscription (change) : Azure Pass - Sponsorship
Subscription ID : f1792d48-9723-40d4-ad81-db2024bf551f

Figure 14-15. Get the URL of Functionl

To test whether our function works well or not, open a web browser and paste the
function URL copied from the previous step along with a query string of name=ashirwad.
Now press Enter to send a request to the function. You should get a result similar to
Figure 14-16.

351

CHAPTER 14 DEPLOQYING YOUR AZURE FUNCTIONS USING IDES
& C 2 https://functionappdeploychapter.azurewebsites.net/api/Function1?name=ashirwad

Hello, ashirwad. This HTTP triggered function executed successfully.

Figure 14-16. Send a GET request to Functionl

In this section, you looked at ways to deploy a function project to Azure and how
to create a function app resource using Visual Studio. Now you will dive deeper into
deployment slots and ways to use them with Azure Functions.

What Are Deployment Slots?

Usually when you are working on enhancement projects, one instance of the application
will be already running in the production environment, and before you deploy the
applications along with the enhancement to a production environment, you will usually
perform multiple tests to confirm your release is issue-free. With slots, you can deploy a
new instance of our application to perform sanity tests.

Deployment slots provide a mechanism to perform blue-green deployments. This
ensures that you have minimal downtime while giving releases of application along with
ensuring easy fallback options. Once our new release is deployed in a staging slot and
passes the testing phases and is ready to be deployed to the production environment,
you can use the swap option to move the release deployed in the staging slot to
production with minimal downtimes.

Note While running on a Consumption Plan, you can have only one slot, but while
running on an App Service Plan, you can have multiple slots.

Deploy an Azure Function to Deployment Slots

To create a slot, go to the function app. Click Deployment Slots in the Deployment
section in the sidebar menu. Now click + Add Slot to create a new slot. See Figure 14-17.

352

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Home * Resource groups » rg-chapter-14 » FunctionAppDeployChapter

== FunctionAppDeployChapter | Deployment slots X

Function App

| 2 search Ct= L m “a Sws B ogs T Refresh

Functions A You haven't added any deployment siots. Click heve to get started. 3
il Functions
App keys :i
= Deployment Slots

W app files J

2 Provies + i
Deployment slots are live apps with their own hostnames. App content and configurations elements can be swapped between two deploymant slots, including
the production slot.

Deployment

I 5 Deployment dots I HAME staTus APPSERVICE FLAN
@ Ceployment Centar functarsopdeploychanter Aurning SouthindiaPian
Settings

1 Configuration

& authentication

Figure 14-17. Click Add Slot

You will see a new screen to enter a slot name. Once you enter the slot name, you

need to click Add to create a new slot for your function app. See Figure 14-18.

il

Home » Rescurce groups > rg-chapter-14 > FunctionAppDeployChapter Add a SIOt w
= FunctionAppDeployChapter | Deployment slots

Furtion Agp Name

2 sparch (Ctr+) g o+ add St . B togs T Ratrash functionappdepioy-siat

Functions
.) B
fi Functions [’ Deployment Slots
App keys
B App files Deployment slots are [ive apps with their own hostnames. App contenl
the praduction skat.
B Proxies

Deployment HAME STATUS
funbonappdeployche DDUCTIO Runain.
= Deployment skots S Sphape g

B Ceployment Center

Settings

| Configuration
& authentication

huthentication (classic)

<

Application Insights

Identity

Figure 14-18. Click Add

A slot will be created for your function app along with its status, as shown in

Figure 14-19. The slot in which the production workload is running will have a tag and

production slot associated with its name.

353

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

¥ FunctionAppDeployChapter | Deployment slots

[—ey
J Function App
|P— Search (Ctrl+)) « = AddsSior ¥y Swap Bl togs T Refresh
Functions o You have reached the slots quota limit (2) for the current plan.
VAl Functions
=
Appleys = o Deployment Slots
App files W
2 Proxies Deployment slots are live apps with their own hostnames. App content and ¢

the production slot.
Deployment

=% Deployment slots NAME STATUS
g Deployment Center functionappdeploychapter Running

functionappdeploychapter-functionappdeploy-siot Running
Settings

il Configuration

& Authentication

Figure 14-19. View the deployment slots

You have created the slots, so let’s open the function project again in Visual Studio
to deploy a modified version of the function app to it. Refer to Listing 14-1 to view the
modified version of Functionl.

Listing 14-1. Modified Version of Functionl.cs

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.LlLogging;

using Newtonsoft.Json;

namespace FunctionAppDeploy

{

public static class Functioni

{

[FunctionName("Functioni")]

354

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post", Route
= null)] HttpRequest req, ILogger log)

log.LogInformation("C# HTTP trigger function processed a
request.");
string name = req.Query["name"];
string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject(requestBody);
name = name ?? data?.name;
string responseMessage = string.IsNullOrEmpty(name);
? "This HTTP triggered function executed successfully. Pass
a name in the query string or in the request body for a
personalized response."
: $"Hello, {name}.";
return new OkObjectResult(responseMessage);

The response returned from Function1 when you pass name=ashirwad as a query
string will be “Hello Ashirwad” instead of “Hello Ashirwad.” This HTTP-triggered
function executed successfully.

To deploy this modified version of Function1.cs to your slot that you have created
in the Azure portal, right-click the FunctionAppDeploy project and click Publish. See
Figure 14-20.

355

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Search Solution Explorer (Ctrl+;) P -
ta Solution ‘FunctionAppDep
wde Tl EunctionAppDeploy
ﬁﬂ Build nnected Services
Rebuild pendencies
Clean :‘_PCI'tIES
tignore
Analyze and Code Cleanup » SRR
Pack stjson
Iﬁ‘r Publish... al.settings.json
Scope to This

Figure 14-20. Click Publish

Click + New to create a new publish profile to deploy the FunctionAppDeploy project
to the newly created slot. See Figure 14-21.

PN <> FunctionAppDeployChapter - Zip Deploy.pubxml ~

Azure Function App (Windows)

+ Newll More actions ~

(V) Successfully published on 5/2/2021 at 9:33 AM.

Figure 14-21. Create a new publish profile

Select Azure as the target in the Publish dialog and click Next. See Figure 14-22.

356

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

-

Publish

Where are you publishing today?

Target

/_‘ Azure

Publish your application to the Microsoft cloud

mm, Docker Container Registry
e Publish your applicaticn to any supported Container Registry that werks with Decker images

Folder

Publish your application to a local folder or file share

C) Import Profile
Impert your publish settings to deploy your app

Finish | Cancel
Figure 14-22. Select Azure as the target

Select Azure Functions App (Windows) as the specific target and click Next, as shown
in Figure 14-23.

357

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Publish
Which Azure service would you like to use to host your application?
Target <> Azure Function App (Windows)
Publish your application code to a serverless compute that scales dynamically and runs code on-
Specific target demand

<> Azure Function App (Linux)
Publish your application code to a serverless compute that scales dynamically and runs code on-
demand

T AN Azure Function App Container
Publish your application as a Docker image to Azure Container Registry and run it on Azure Function
App

[Azure Container Registry
M0 Publish your application as 2 Docker image to Azure Container Registry

Back Finish Cancel

Figure 14-23. Select Azure Function App (Windows) as the specific target

Select the subscription, select View as the resource group, and select the newly
created deployment slot in your function app. Click Finish. See Figure 14-24.

358

DEPLOYING YOUR AZURE FUNCTIONS USING IDES

CHAPTER 14
x
i codewithashirwad
Publish @ oitestined
Select existing or create a new Azure Function
Target Subscription name
'Qzure Pass - Sponsorship - l
Specific target View
Functions instance IResuurce group]'I
Search
Function Apps + ¢

4 [0 rg-chapter-14
4 <> FunctionAppDeployChapter (Consumption)

4 Deployment Slots
i unctiona deplo-slot

Run from package file (recommended)

Back . Mext . Cancel

Figure 14-24. Select the deployment slot

Visual Studio will create a publish profile depending on the configurations you have
selected. Let’s click Publish to start the deployment process of the function project to the

slot. See Figure 14-25.

359

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

. 4> functionappdeploychapter__functionappdeploy-slot - Zip Deploy.p... =
Connected Services ®4 Publish
ml Azure Function App (Windows)

<+ New More actions =

‘ (3 Readyto publish. ‘

Settings
Cenfiguration Release ¢
Target Runtime Portable #
Show all
Hosting
Subscription £1792d48-9723-40dd-ad81-db2024bf551F [
Resource group rg-chapter-14
Resource name functionappdeploy-slct
User name Sfunctionappdeploychapter_functionappdeploy-slot #
Paseward P j
I Site: http://functionappdeploychapter-functionappdeploy-slot. bsites.net (31 I

Figure 14-25. Click Publish

You can see the status of the deployment process from the Output window. See
Figure 14-26.

Show output from: Build =]

Build started. -
13eenes luua ;nrﬂa Froject: FunctionAppDeploy, Configuration: beinse Any CPU ==-=--

2»FuncticndppDeploy -» Ci\Users\Ashirwad Sstapathilsource\reposh i in\Ri netcoresppd. 1\ Functiondopdeploy.dil

23------ Publish started: Project: FunctionAppbeploy, Configuration: Relesse Any CPU -=----

2>FuncticnippOeploy -> Ci\Users\Ashirwad Satapathiisourceirepas) i \netcoreappd. 1\ Functionappdeploy a1l

2Functicnippleploy -> C:\Users\Ashirwed pash i Functi bi\Release\netcorenpp3. 1\ PubTep\Outy

2>Publishing C:\Usersiashirmad sataputni\sou«\nwnrunu i bj wagp3. R i - 20218502112348223.zip to hitpsT
2>zip Deployment succeeded.

=we Build: 1 succeeded, @ failed, O up-to-date, 0 skipoed sewesmssss
me= Publish: 1 succeeded, ® failed, @ skipped msszszssssz

4
Web Publish Activity Eror List Output Package Menager Console

Figure 14-26. View the deployment progress in the Output window

After the deployment is successful, let’s go to the Azure portal and then click the slots
by going to the deployment center of the function app. See Figure 14-27.

360

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Home > FunctionAppDeployChapter

¥ FunctionAppDeployChapter | Deployment slots

Function App
[£ search (Ctrl+) ‘ « o= 2ddslot %y Swap [J Logs T Refresh
Functions =
0 You have reached the slots quota limit (2) for the current plan.
{#} Functions

App keys = i

_\j Deployment Slots

App files
Eroes Deployment slots are live apps with their own hostnames. App content
the production slot.
Deployment
=% Deployment slots NAME STATUS
@ Deployment Center functionappdeploychapter Running
Settings I functionappdeploychapter-functionappdeploy-slot I Running

ill configuration

Figure 14-27. Click the deployment slot

Go to the Functions section in the sidebar of the function app and click Functionl.

See Figure 14-28.

Home > FunctionAppDeployChapter > func P lot (functio ploychapter/functior B lot)

(s functionappdeploy-slot (functionappdeploychapter/functionappdeploy-slot) | Functions
Functicn App
[P sesrch ictr+n | « + agd O Refresh | [Delete
¥ Ouerview . A\ Your app i currently in read only mode because you are running from 3 package file. To make any changes update the cantent in your 2ip file and
B Activity log 'WEBSITE_RUN_FROM _PACKAGE app setting.

A Actess control (LAM)

@ T [F Filter by name_..

& Diagnose and solve problems
0 securiy [:l Name * Trigger T4 Status Ty

r . Functicnl HTTP Enabled
Events (preview)

Functions

U5} Functions I

T App keys
B Appfiles

= Proooes

Figure 14-28. Click Functionl

361

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Click the Get Function Url and copy the URL to send a request to the function. See
Figure 14-29.

(r,} Function1 2 -

Function

= - T _ . . = e
Search [Ctrl+) | « v Enable) Disable E_‘] Get Function Url §{_) Refresh

i} Overview Get Function Url

Developer | default (function ... | |https:munciionappdeproychapter‘funclionappdeplayvslol.azurewebsiles.net.-’apiﬁ... i |
S =
* Integration

Status : Enabled

B ™onitor
Resource group (change) : rg chapter-14

Prirction Keys Subscription (change) : Azure Pass - Sponsorship

Subscription 1D : f1792d48-9723-40d4-ad81-db2024bf551f

Figure 14-29. Click Get Function Url

Let’s paste the function URL in the address bar by concatenating the name=ashirwad
query string and press Enter. See Figure 14-30.

< C & httpsy//functionappdeploychapter-functionappdeploy-slot.azurewebsites.net/api/Function1?name=ashirwad

Hello, ashirwad.

Figure 14-30. Response from Functionl deployed on the slot

As you can see in Figure 14-30, the response from Functionl was as expected. Thus,
you were able to successfully deploy the function in the slot.

Deploy an Azure Function to Azure Using VS Code

Open Visual Studio Code and click the “Create a new project” icon as highlighted in
Figure 14-31 to create a function project.

362

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

®] File Edit Selection View Go Run Terminal Help Welcome - Visual Studio Code

AL o Welcome %
> RESOURCE GROUPS
» HELP AND FEEDBACK
~ FUNCTIONS E "‘; ? (S =)
> Azure Pass - Sponsorship Y Start
New file
Open folder... or clone repository...

Recent

TestFunction C\Users\Ashirwad Satapathi\Desktop
/S demo Ci\Users\Ashinwvad Satapathi\Desktop

Tkinter D:\Git Repo

Audio-Buddy D\

nodejs D:\Project

More.. (Ctrl+R)

Figure 14-31. Create a new function project

You have to select the language in which you will be writing the functions. Let’s select
C# in this window. See Figure 14-32.

= Create new project

Select a language

C# (recently used) I

JavaScript

TypeScript

Python

Java

PowerShell

Custom Handler

[A view sample projects ii
SO INSTal e semings an

Figure 14-32. Select the programming language

You will have to select the .NET runtime for the function project. Let’s select NET
Core 3 LTS. See Figure 14-33.

363

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

« Create new project (3/5)

Select a .NET runtime

I .NET Core 3 LTS '

.NET 5 Isolated

Figure 14-33. Select a NET runtime

You have to select the template type, i.e., the trigger type of your function for the
function project. Let’s select HttpTrigger. See Figure 14-34.

- Create new project

Select a template for your project's first function

HttpTrigger (recently used) I :
V) Skip for now .

TimerTrigger

QueueTrigger
BlobTrigger
DurableFunctionsOrchestration

Figure 14-34. Select the trigger type

You need to enter the name for the function. Let's name it HttpTriggerFunction. See
Figure 14-35.

= Create new HttpTrigger (5/8)

I HttpTriggerFunction I

Provide a function name (Press "Enter’ to confirm or "Escape’ to cancel)

Figure 14-35. Enter a function name

You need to enter a namespace for the function project. Let’s keep it as Company.
Function. See Figure 14-36.

364

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

= Create new HttpTrigger (6/8)

I Company.Function I

Provide a namespace (Press 'Enter’ to confirm or 'Escape’ to cancel)

Figure 14-36. Enter the namespace for the project
You need to select the authorization level for the function. Use Anonymous. See

Figure 14-37.

<« Create new HttpTrigger (7/8)

AccessRights

I Anonymous (recently used) I

Function
Admin

Figure 14-37. Select the authorization level of the function

Asyou can see, a local function project was created by VS Code with an
HTTP-triggered function named HttpTriggerFunction. This function contains boilerplate
code similar to that shown in Listing 14-1. To deploy this function to Azure, click the
Deploy to Function App icon, as highlighted in Figure 14-38.

+ FUNCTIONS 4 O B E;
> Azure Pass - Sponsorship

|_Dep|oy to Function App...

v~ W% Local Project FunctionProject

v i= Functions Read-only 16
(® Run build task to update this list... i;

f HttpTriggerFunction HTTP 16

20

21

Figure 14-38. Click the Deploy to Function App icon

365

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

We will be prompted either to select any of the existing function apps or to create
a new function app. Click “Create new Function App in Azure...Advanced” and press
Enter. See Figure 14-39.

Eelect Function App in Azure

FunctionAppDeployChapter (recently used)
-+ Create new Function App in Azure...

-+ Create new Function App in Azure... Advanced I

Figure 14-39. Create a new function app in Azure

Note If you select an existing function app to deploy your function project, then it
will overwrite any previous deployments made to it, and it cannot be undone.

You will have to enter the function app name. Let’s enter Chapter14FunctionApp as
the function app name and press Enter. See Figure 14-40.

Create new Function App in Azure (1/7)

IChapterMFunctionAppl I

Enter a globally unique name for the new function app. (Press 'Enter' to confirm or 'Escape’ to
cancel)

Figure 14-40. Enter the function app name

You will be prompted to select the runtime stack for the function app. Since you
selected .NET Core 3.1 as the runtime for the function project while creating it, let’s
select the same setting here. See Figure 14-41.

<« Create new Function App in Azure (2/7)

ISeIect a runtime stack.

.NET Core 3.1
.NET 5 (non-LTS)

Figure 14-41. Select the runtime stack

366

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

You will have to select the OS for the function app. Select Windows. See Figure 14-42.

= Create new Function App in Azure (3/8)

L".e[ect an OS.

Linux
IWindows I

Figure 14-42. Select Windows as the OS

You will be prompted to select the hosting plan. Let’s select the Consumption
hosting plan. See Figure 14-43.

= Create new Function App in Azure (4/8)

lSeEect a hosting plan.

Consumption

Premium

App Service Plan

Figure 14-43. Select the hosting plan

Now, you will have to select the resource group inside of which your function app
and other associated resources will be created. Let’s select rg-chapter-14 as the resource
group. See Figure 14-44.

<« Create new Function App in Azure (5/8)

| Kelect a resource group for new resources. l

- Create new resource group

|

I rg-chapter-14 southindia I

|'|

Figure 14-44. Select the resource group

367

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

You will be prompted to select from any of the existing storage accounts or create
a new storage account that will be used by the function app. Let’s select a “Create new
storage account” as it is advisable to have a separate dedicated storage account for each
function app. See Figure 14-45.

= Create new Function App in Azure (6/8)

}Select a storage account.

I -+ Create new storage account I

storageaccountchapter
chapteri4testfunction

Figure 14-45. Click “Create new storage account”

Enter the name for the storage account. Let’s name it chapter14functionapp. See
Figure 14-46.

< Create new Function App in Azure (7/9)

 [Epleriatuncionsp |

Enter the name of the new storage account. (Press 'Enter' to confirm or 'Escape’ to cancel)

Figure 14-46. Enter the name for the storage account

You will be prompted to either create a new Application Insights resource or skip for
now for your function app. Let’s click “Skip for now.” See Figure 14-47.

&« Create new Function App in Azure (7/7)

}Select an Application Insights resource for your app. ‘

O Skip for now (recently used) I

-+ Create new Application Insights resource

Figure 14-47. Select an Application Insights resource for the function app

368

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Now you will have to select the region in which all the resources associated with

the function app will be created. Let’s select South India here and press Enter. See
Figure 14-48.

e

Create new Function App in Azure (10/10)

“Se[ect a location for new resources. |

South India (recently used) I

Australia Central
Australia Central 2
Australia East
Australia Southeast
Brazil South

Brazil Southeast
Canada Central
Canada East
Central India
Central US

Figure 14-48. Select the region/location

The deployment process of your function app will be going on now in the

background. You can view the progress in the Output window. Once the deployment

has completed successfully, you will see a notification dialog at the bottom screen of

VS Code similar to the one shown in Figure 14-49. You can also see any errors in the

function app deployment in notification dialog and Output window.

2:e1:e9
2:e1:89
2:81:17
2:91:44
2:@2:90
2:82:83

PM ChapterldFunctionApp:
PM ChapterldFunctionApp:
PM Chapterld4Functiondpp:
PHM Chapterl4FunctionApp:

PROBLEMS OUTPUT DESUG COMSOLE Azure Functions = B8 ~ X
Skipping post build. Project type: Run-From-Iip
Triggering recycle (preview mode disabled).
Deployment successful.
Syncing triggers...
Y € £2 Deployment to "Chapteri4FunctionApp” completed. £ X

PM ChapterldFunctionApp:

PM Chapterl4FunctionApp

Querying triggers...

HttpTriggerfunction: https://chapterldfunctionapp.azurewebsi

Figure 14-49. Deployment status of the function app

Instead of going to the function app in the Azure portal to get the function URL, let’s
right-click the HttpTriggerFunction present inside the function app in which you had

created and deployed your function project and click Execute Function Now to send a

request to your function running in Azure. See Figure 14-50.

369

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

 FUNCTIONS 14 {

v Azure Pass - Sponsorship 15 [Fun

I 16 publ

~ 4> Chapter14FunctionApp 17

v = Functions Read-onl 18

f HttpTriggerFunction HTTP . n .

> +i= Application Settings Copy Function Url

> [Files Read-only Execute Function Now...

> Logs Read-only

> @ Deployments Disable Function

> E Proxies Read-only Start Streaming Logs

> M Slots

Stop Streaming Logs

% A EunrctinnAnnDanloshantar

Figure 14-50. Click Execute Function Now

Now you will be prompted to enter the name along with its value as a key-value pair
in JSON format. Let’s enter it as {“name”:”ashirwad”} and press Enter. This will send a
request to the HttpTriggerFunction running in Chapter14FunctionApp. See Figure 14-51.

{ "name": "ashirwad" } I

Enter request body (Press "Enter’ to confirm or ‘Escape’ to cancel)

am 1 e e e S g L L = e e e e L

Figure 14-51. Pass the name and its value as a key-value pair

You will get back the response from the function in a notification dialog at the
bottom of the VS Code window. This function gave back the response “Hello, Ashirwad.”
So, this HTTP-triggered function executed successfully as expected. See Figure 14-52.

Executed function "HttpTriggerFunction®. Response: "Hello, €% v X
ashirwad. This HTTP triggered function executed
successfully.”

Source: Azure Functions (Extension)

Figure 14-52. Response from HttpTriggerFunction

370

CHAPTER 14 DEPLOYING YOUR AZURE FUNCTIONS USING IDES

Summary

In this chapter, you explored ways to deploy function projects using different IDEs. We
also discussed slots and ways to create a deployment slot in the Azure portal and deploy
a function project there.

The following are the key takeaways from the chapter:

* You can deploy an Azure function project using IDEs like Visual
Studio, VS Code, etc.

o Deployment slots help you run multiple versions of your
applications.

o Everyslot has its own instance and can be swapped with the
application running in the production slot.

o Slots are helpful in performing blue-green deployments with ease.

371

CHAPTER 15

Deploying Your Azure
Functions Using a

CI/CD Pipeline with
Azure DevOps

While a software application is being developed and deployed, you use multiple
processes before the final application is completed and deployed. This often includes
phases such as requirements gathering, system design, development, testing, and
deployment irrespective of the SDLC models followed. These processes used to be quite
time-consuming, with the development and operations teams not being in sync. With
the demanding business scenarios of current times, you need a shorter time to market to
release newer features of your products to serve your end customers.

To meet the demand for faster delivery of applications and features, organizations
have embraced DevOps principles and practices to increase their team’s efficiency by
overcoming the hurdles associated with following traditional SDLC models. Often the
development and operations teams are isolated from each other in a traditional setup,
which makes it difficult to move or roll back features to different environments. By
incorporating DevOps practices such as agile planning, continuous integration (CI),
continuous delivery (CD), and monitoring, you try to ensure seamless collaboration and
communication among the developer, operations, QA, and security teams to deliver and
ship products quickly with robust rollback mechanisms to meet customer demands and
reduce cost.

373
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_15

https://doi.org/10.1007/978-1-4842-7122-3_15#DOI

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

In previous chapters, you explored ways to build solutions and ways to deploy them
to Azure with different IDEs. The focus in this chapter will be to explore ways to deploy
your function project to Azure using CI/CD pipelines with Azure DevOps. This can also
be done using GitHub actions.

Structure of the Chapter

This chapter will explore the following topics:
e What Azure DevOps is

o Creating a build pipeline and enabling continuous integration using
Azure Pipelines

o Creating a release pipeline and enabling continuous deployment
using Azure Pipelines

Objectives

After studying this chapter, you will able to do the following:
o Work with GitHub repositories in Azure DevOps

e Build CI/CD pipelines to deploy function projects using Azure

What Is Azure DevOps?

A typical application lifecycle contains multiple phases such as planning, development,
delivery, and operations. DevOps teams use various tools to help them with each of the
phases. For example, some organizations use tools like Jira from Atlassian to collaborate
and plan sprints, perform issue tracking, and add feature requests, but they use a
different set of tools like Jenkins or GitHub for delivery. With Azure DevOps, Microsoft
provides a suite of services in a unified platform to help your DevOps teams in all the
phases of the application lifecycle.

374

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Azure DevOps provides the following services to help teams to increase the

efficiency of teams in all the phases of the application lifecycle:

Azure Repos: With Azure Repos, teams can keep track of changes
in their code base and provide an efficient way to keep a history of
their development. It is a version control system provided by Azure
DevOps where you can create multiple private repositories and
collaborate to add features or resolve bugs/issues.

Azure Boards: With Azure Boards, teams can collaborate, plan, track,
and monitor tasks, feature requests, and issues related to the projects.
It provides native support for Scrum and Kanban. You can create a
dashboard to visually monitor the progress of your project.

Azure Pipelines: With Azure Pipelines, teams can practice continuous
integration and continuous delivery to build and ship products
developed by various languages to different target environments. It
helps in creating the build packages and performing unit tests along
with other tasks such as vulnerability assessment using tasks from
third-party vendors from the marketplace.

Azure Test Plans: With Azure Test Plans, teams can perform various
kinds of testing such as exploratory, manual, or user acceptance tests
in a browser. Azure Test Plans provides the QA teams with all the
resources required to perform testing with end-to-end traceability
within the browser.

Azure Artifacts: With Azure Artifacts, teams can create and share
NPM, NuGet, or Maven packages feeds with the rest of teams from
public and private sources. It is a package management solution
offered as a service in Azure DevOps.

Note

Maven is a Java project management software that helps you build,

package, version, and run Java applications with ease. You can add the external
packages that you will refer to in your Java project using a Maven project
configuration file, and Maven will include those packages while building the
application.

375

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Before diving deeper into this chapter, you will need to provision a function app in
Azure where you will be deploying your function project and then commit your function
project to a repository. I have created a function app named funcchapter15 that does
not contain any functions for the time being. I will show how to use Azure Pipelines
to deploy the function present in your function project to this function app later in the
chapter. See Figure 15-1.

() funcchapter15 | Functions

Function App

£ Search (Ctrl+/) « + Add () Refresh] Delete
> QOverview =
& Activity log ’/C Filter by name...
A Access control (1AM)
Name T

14 Tags

Mo results.
¢ Diagnose and solve problems
@ Security

Events (preview)

Functions

I A} Functions I

App keys

Figure 15-1. Create a function app

Though Azure DevOps provides you with a service to create a private repository,
we will be using GitHub for this chapter. I have created a repository in GitHub called
Chapter15FunctionApp. You can find the source code at https://github.com/
AshirwadSatapathi/Chapter15FunctionApp.

This repository contains a function project with an HTTP-triggered function that
returns a personalized message along with the value passed for the query string name or
for the value of name sent in the request body. You can clone this repository or use your
own repository to follow along with this chapter.

Now that you have created a function app and a repository, you are ready to create
your CI/CD pipelines.

376

https://github.com/AshirwadSatapathi/Chapter15FunctionApp
https://github.com/AshirwadSatapathi/Chapter15FunctionApp

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Create a Project in Azure DevOps

Go to https://dev.azure.com and click Sign In to log on to your Azure DevOps account.

Note If you are signing up for the first time, you will be prompted to enter an
organization name and select the region where you want it to be hosted.

To create a project, go to the organization where you want to create the project and
click “+ New project.” See Figure 15-2.

ko]

ashirwadsatapathi

Projects My work items My pull requests S Filter projects

ashirwadsatapathi

Figure 15-2. Click “+ New project”

You will be prompted to enter the project details on a new screen. Enter the
project name and description, select Private for the visibility, and then select Git as
the version control system. Then set “Work item process” to the process you follow in
your organization. For example, if your organization follows Scrum, then select Scrum
here. After filling in all the required information, click Create to create the project. See
Figure 15-3. This will create the project and redirect you to the project screen.

377

https://dev.azure.com

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Create new project X

Project name ™

I Chapter-15 I v
Description

Demonstration of Deploying Azure Functions using CI/CD pipelines
Visibility

Public Private

Anyone on the internet can Only people you give

view the project. Certain access to will be able to

features like TFVC are not view this project.

supported.

. Advanced
ersion control & Work item process @
| —
Git ~ I Basic v I

Figure 15-3. Click Create

Create a Build Pipeline in Azure DevOps and Enable
Continuous Integration

To create a build pipeline, click Pipelines and then click Create Pipeline. See Figure 15-4.

378

CHAPTER 15

) Azure DevDps

B chapter1s +
Overview

B zoara:

Repos

w9 ripelines I

i Pipelines

£ Environments.
Releases
Library

Task groups

i @8 2 %

Deployment groups

g
A Test Plans
B aitscs

& Project settings «

Figure 15-4. Click Create Pipeline

Create your first Pipeline

Automate your build and release processes using our wizard. and geo from

code to cloud-hested within minutes.

Creata Pipeiine [

DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

The simplest way to create a pipeline in Azure DevOps is by using the classic editor.

You can also use YAML scripts to create a build and deployment pipeline. For now, click

“Use the classic editor,” as shown in Figure 15-5.

379

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Connect Select Configure
MNew pipeline
Where is your code?

Azure Repos Git YAML

Bitbucket Cloud YaML

Fosied Dy Atlassia

GitHub YAML

Home to the world's largest community of developers

GitHub Enterprise Server YAML

The self-hosted version of GitHub Enterprise

Other Git

Any generic Git repository

WedO0adDd

Subversion

Centralized version control by Apach

Use the classic edito] to create a pipeline without YAML.

Figure 15-5. Click “Use the classic editor”

Select GitHub as the source. This will prompt you to create a connection to allow
access to the pipeline to your GitHub repositories. You can create a connection by
either authorizing using OAuth or using the GitHub personal access token. You will be
creating the connection by clicking “Authorize using OAuth.” This will prompt you to log
in using your GitHub credentials and give the connection the required permissions. See

Figure 15-6.

380

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Select a source

@
e
Azure Repos Git GitHub GitHub Enterprise Subwversion
Server

'S
Ly

" 14

Bitbucket Cloud Other Git

C We need your authorization to access your repositories

Connection name *

I GitHub connection 1 I

Authorize using OAuth Or Authorize with a GitHub personal access token

Figure 15-6. Click “Authorize using OAuth”

Click Authorize AzurePipelines to allow permissions to the pipeline and create a

connection. See Figure 15-7.
° o

Authorize Azure Pipelines (OAuth)

@ B Azure Pipelines (QAuth) by AzurePipelines
w— wants to access your IR <o unt

I'E:]: Repository webhooks and services —
Admin access
fo\ Personal user data W
Email addresses (read-cnly), profile information (read-only)
[:_] Repositories -
n Public and private

Autherizing will redirect to
hitps/fapp.vssps.visualstudio.com

Figure 15-7. Click Authorize AzurePipelines

381

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

You will have to select the repository and branch containing your project files. Once
selected, click Continue. See Figure 15-8.

Select a source

)
)
e
g O @) =
Azure Repos Git GitHub GitHub Enterprise Subversion
Server
Bitbucket Cloud Other Git
(i) Authorized using connection: GitHub connection 1 Change

Repository * | Manage on GitHub (2

AshirwadSatapathi/Chapter15Func
tionApp

Default branch for manual and scheduled
builds *

master

Continue

Figure 15-8. Click Continue

Azure DevOps provides multiple templates based on the application. Since your
application is an Azure function developed using .NET, let’s search for azure functions for
.NET in the search box and then click Apply in the template, as highlighted in Figure 15-9.
Alternatively, you can start with an empty job, too. See Figure 15-9.

382

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Select a template Ip azure functions for... X I
Or start with an iy Empty job

Configuration as code

YAML

experience, Learn more

experience 10 _'C::"":‘_': your pipelines

Others

&> Azure Functions for NET
Build and package a .NET based Azure Functions Apply

application to be deployed on Azure Functions.

Figure 15-9. Select the template and click Apply

Azure DevOps will generate a build pipeline with the prepopulated tasks required to
build your function project in the agent job. These are the minimum set of tasks required
to build your function project.

Note You can add further tasks from the Azure Marketplace offered by third-party
vendors like WhiteSource to perform vulnerability assessment in the build pipeline
and review the vulnerabilities reports after the build pipeline has executed. You can
find more information at www.whitesourcesoftware.com/resources/.

You can configure the agent job by adding tasks or changing the agent specification
to a Mac or Ubuntu instead of vs2017-win2016. Let’s click Save to save the build pipeline.
If you want to execute the build pipeline, you can manually start it by clicking Save &
Queue after making the required changes or just click Queue to start the build process if
you haven’t made any changes. See Figure 15-10.

383

http://www.whitesourcesoftware.com/resources/

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

@ - > Chapter-15-Azure Functions ...

Tasks Variables Triggers Options Retention History B Save & queue v Ve
Pipeline B Save & queue
=
== Get sources g2
) AshinvadSatapathi/Chapter1sFunctionAop I* master Ir-lS-Azure Functions for NET-CI I
Agent job 1 jAgem pool* (D | Poolinformation | Manage
E Run on agent Azure Pipelines) O

P Build project

Agent Specification *

| :2017-win2016 |

Archive files

]

Parameters ©
f Publish Artifact: drop

Learn more 2

Figure 15-10. Click Save

You may have noticed that you do not have a test task here in the pipeline. Ideally
it should be added to run all the unit and integration tests present in the project’s
solutions, but since you did not have any unit tests written for this solution, you have not
added it in the pipeline. With this, you have created the build pipeline for your Azure
Functions project that can be triggered manually. But it does not make sense to manually
start the build process for most of the project. It would be ideal to have a mechanism to
automatically start the build process every time code was committed to your repository.
You can achieve that by enabling continuous integration for your build pipeline.

To enable continuous integration, click the Triggers tab and then select the checkbox
“Enable continuous integration.” Also, select Include as the type and define the branch
specification as Master. You choose Master in the branch specification since you want
to start the build process every time a change is made in the master branch. If you
wanted to initiate the build process whenever a change was made in some other branch,
then you would define that here. To save the changes, you have to enable continuous
continuation and initiate the build process. Click Save & Queue. See Figure 15-11.

384

CHAPTER 15

& - > Chapter-15-Azure Functions ...

Tasks Variables Options Retention History

Continuous integration

DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

& Save & queue v

“) Discard = Summary &

Pull request validation

o AshirwadSatapathi/Chapter15FunctionApp

Scheduled

Build completion

t Add

© AshirwadSatapathi/Chapter15FunctionApp

| @ Enable continuous integration I

(D) Batch changes while a build is in progress

Branch filters

Type Branch specification

I Include VI Imaster I i
-+ Add

Path filters

-+ Add

Figure 15-11. Enable continuous integration

You will see a dialog to enter some information and make any changes to existing

configurations before starting the build process. You can add a comment here, but it

is completely optional. After entering the required information or changing any of the

configuration details as required, click “Save and run” to start the build process. See

Figure 15-12.

385

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Run pipeline X

Select parameters below and manually run the pipeline

Save comment

Manually starting the build prccess|

Agent pool

I Azure Pipelines s I

Agent Specification *

| vs2017-win2016 -
Branch/tag
I master v l

— |

Advanced options

Variables 5

anaple dgennea

(O) Enable system diagnostics Cancel

Figure 15-12. Click “Save and run”

The build pipeline will be in the queue for some time and should start as soon as
a build agent is available. To review each of the tasks of the build and look at the logs
associated with each task, click “Agent job 1” See Figure 15-13.

386

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

© #44 Add project files.

on chapter-15-Azure Functions for .NET-CI

(D This build will be retained for 30 days

Summary

Manually run by (G ——

Repository and version
© AshirwadSatapathi/Chapter1 SFunctionApp
¥ master ¢ 315d5d4

Time started and elapsed

E Just now

Related
10 work items

i 1 consumed

Jobs
Name Status Duration
© Agentjob1 Queued

Figure 15-13. Click “Agentjob 1”

On this screen, you can view the status of each task as well as look at the logs

associated with each of the them by clicking them. Once all the tasks have completed

successfully, you will see a green check mark for all of them. See Figure 15-14.

387

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

& Jobs in run #44 ¥ Agentjob 1

chapter-15-Azure Functions for NET-

Jobs
~ @ Agentjob1 35s Duration: 35s
Initialize job ds 7 » Job preparation parameters
fr 1 queue time variable used
@ Checkout AshirwadSata... 4s & 1 artifact produced
@ Build project 24s
© Archive files
@ Publish Artifact: drop 1s
@ Post-job: Checkout As... .15
Finalize Job <1s

Figure 15-14. View the status of tasks and their logs

In this section, you created a build pipeline and enabled continuous integrations.
Now every time a change happens in your repository, the build process will be initiated
without any human intervention, thus automating the build process. But you have only
generated the build package and published the build artifact. You need to deploy the
build package to your function app.

Create a Release Pipeline in Azure DevOps
and Enable Continuous Delivery

To deploy the function project by using the build package generated by the build
pipeline, you need to create a release pipeline.

To create a release pipeline, go to Pipelines, click Releases and then click “New
pipeline.” See Figure 15-15.

388

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

I‘:J Azure DevOps abhisekmisra [/ chapter-15 / Pipelines Releases P Sea

B hapter1s -

B overview

B9 Boards

-

W Pipelines A\
di Pipelines .

& Environments ® 4 "0 J%
- i YR

ms

=

Library No release pipelines found

Task groups Automate your release process in a few easy steps with a new pipeline

L TR

A Test Plans
! Artifacts

Figure 15-15. Create a new release pipeline
You will be prompted to select the template type. Since you want to deploy a function

project, search for function, select “Deploy a function app to Azure functions,” and click
Apply. This will populate a set of tasks required to deploy out of the box. See Figure 15-16.

389

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

release pipeline

Select a template function X
Retention Options History Or start with an &y Empty job
Others
Stages Add ™~ & Deploy a function app to Azure Functions
Deploy your serverless application to Azure Function App. Apply
& Deploy a function app to Azure Functions with
2) stage slot
= jo) Depl PP 10 a staging slot an to

=3 Select a template
Featured

f ﬁ“\l Azure App Service deployment
p. your application to Azure App Service. Choose from
pp on Windows, Linux, containers, Function Apps, or

Figure 15-16. Select a template

You have to give this stage a name. Since you have only one function app in this case,
let’s name it Production. Depending on the solution, there can be multiple stages in a
release pipeline. See Figure 15-17.

390

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Stage
Stages | |+ Add v Production

& Properties ~

Name and owners of the stage

I
| Stage name
% Production Q J

R | O 1job, 1task Production

L | Stage owner

c

Figure 15-17. Enter a name for the stage

As you have already selected the template type as well as named the stage, let’s add
the artifact. Click + Add or “+ Add an artifact” to do so. There can be multiple artifacts in
arelease pipeline. See Figure 15-18.

Artifacts ||+ Add Stages | + Add “/
A 1~ 5 [1 I
4 Addan B % Production Q
artifact joy @ 1job, 1 task
1 |
Schedule
@ not set

Figure 15-18. Add an artifact to the release pipeline

391

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

You will see a pop-up on the side; it requests you to select the source type along with
the source. The source is the build pipeline whose build package you want to deploy in
this release pipeline. By default, it will select Latest as the default version and generate
a source alias name. When you select Latest as the default version, the release pipeline
picks the latest build package generated by the build pipeline for the deployment. After
entering the required fields, click Add. See Figure 15-19.

Add an artifact

Source type

B g O &

+ Build Azure Repos ... GitHub TFVC

5 more artifact types

Project* (@

chapter-15 v

Source (build pipeline) * @

Ichapter-‘IS-Azure Functions for NET-CI w I
Default version* @

ILatest ~ I
Source alias * [0)

l _chapter-15-Azure Functions for NET-CI I

(@D The artifacts published by each version will be available for deployment in release pipelines. The
latest successful build of chapter-15-Azure Functions for .NET-CI published the following
artifacts: drop.

Figure 15-19. Click Add

You have added the artifact and configured the release pipeline to take the latest
build package for deployment, but you haven’t configured it to start every time a new
build package is generated. Ideally, you want the release pipeline to start the deployment
process as soon as a new build is generated. This process is also known as continuous
deployment. To enable continuous deployment in your release pipeline, click the

392

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

thunderbolt icon highlighted in Figure 15-20. Now you will see a pop-up on the side. You
need to toggle the Enabled button to set the continuous deployment trigger to on. This
will enable continuous integration support in your release pipeline. See Figure 15-20.

Continuous deployment trigger

Artifacts | | Add Stages | + Add v Build: _chapter-15-Azure Functions for NET-CI
@D cenabled
i Creates a release every time a new build is available.
|)
L:J poy
. £ Production Build branch filters (O
_chapter-15-Azure N - Q
Functions for R | @ 1jab, 1task .
No filters added.
+ Add | v
Schedule .
O ot set Pull request trigger

Build: _chapter-15-Azure Functions for MET-C|
“ ~

)
(@) Disabled

(1) Enabling this will create a release every time a selec
request workflow

Figure 15-20. Enable a continuous deployment trigger

Note In addition to providing a mechanism to add continuous deployments,
Azure DevOps provides a way to have predeployment conditions such as setting
predeployment approval for each stage for certain users. This is a useful feature.

You have added the artifact, selected the template for the stage, and configured
continuous deployment for the release pipeline, but you haven’t yet configured the agent
job and task. To do so, click “1 job, 1 task,” as highlighted in Figure 15-21.

393

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Artifacts | + Add Stages | + Add v

;

_chapter-15-Azure # Production a

Functions for 8 O 1job, 1task |

Schedule
@ not set

Figure 15-21. Click “I job, 1 task”

When you have selected the template as “Deploy a function app to Azure
functions,” it will add the Deploy Azure Function App task to your agent, but you
will have to configure the parameters. You need to select the Azure subscription and
authorize the release pipeline to access all the resources present in the subscription.
Now you need to select Function App on Windows for the app type and select
funcchapter15 as the app service name, which is the function app you created at the
beginning of this chapter. After filling in the required fields, click Save to save the
changes made. See Figure 15-22.

394

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

All pipelines > % New release pipeline

Pipeline Tasks~ Variables Retention Options

Production
Deployment process

Run on agent

B Run on agent

History

& Deploy Azure Function App
Azure Funictions

B save

Stage name

Production

Parameters © | @ Unlink 2

Azure subscription * @ | Manage 12

| w—————————_

Apptype @

I Function App on Windows I

App Service name * @

Ifuncchaplerlb I

Figure 15-22. Configure the task and save the changes

Click “Create release” to start the deployment process. See Figure 15-23.

All pipelines > 7 New release pipeline

Fipeline Tasks ~ Variables Retention Options

Production

Deployment process

Run on agent

B Run on agent

<5 Deploy Azure Function App

Azure Functions

Figure 15-23. Click “Create release”

History

£ Create release

Stage name

Production

Parameters © | @ Unlink all

Azure subscription * @ | Manage 2

@ Seoped to subscription Visual Studio Enterprise

This field is linked to 1 setting in "Deploy Azure Function App'

App type <&
Function App on Windows
App Service name * @
funcchapter1s

395

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

You will be prompted with a new screen where you will see the details associated
with your release such as the stage name as well as the source alias name of the artifact.
You can add a release description on this screen and click Create to start the deployment
process. See Figure 15-24.

Create a new release X

New release pipeline

Pipeline ~

Click on a stage to change its trigger from automated to manual.

Stages for a trigger change from automated to manual. (@

v
BB Artifacts A
Select the version for the artifact sources for this release

Source alias Version

_chapter-15-Azure Functions for.... 44 '

Release descripticn

Creating Release Deploymentl

Figure 15-24. Click Create to start the deployment process

To view the deployment status, click Release-1, as highlighted in Figure 15-25.

396

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

All pipelines > % New release pipeline

@ Releaslas been created

Pipeline Tasks v Variables Retention Options Histery

Production

Deployment process
Run on agent

B Run on agent

147 Deploy Azure Function App
Azure Functions

Figure 15-25. Click Release-1

On this screen, you can view the deployment status of the stage. To view the status of

the tasks and their logs, you need to click Logs, as highlighted in Figure 15-26.

Release Stages
Manually triggered Production
by [@ In progress

5/23/2021, 10:51 PM

Deploy Azure
Function Apg
Artifacts & 00:44
+
G __|
_chapter-15-Azure Fun... ==
o S Cancel = Logs m
¥® master

Figure 15-26. Click Logs

397

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

You can view the status of all the tasks associated with the release pipeline on this
screen. To view the logs of a particular task, you can click it. Once the deployment
is completed, you will see a green check mark for all the tasks and the message
“Succeeded” beside the stage name, as highlighted in Figure 15-27.

"t" New release pipeline > Release-1 > Production ~

< Pipeline Tasks Variables Logs Tests < Deploy () Refresh L Download all logs " Edit
Run on agent
Pool: Azure Pipelines - Agent: Hosted Agent

Deployment process
Succeeded

() Run on agent
Succeeded

eded

@ Initialize job - succeeded
@ Download artifact - _chapter-15-Azure Functions for NET-CI - drop - Jsucceeded
@ Deploy Azure Function App - succeeded

@ Finalize Job - succeeded

Figure 15-27. View the deployment status

Now that your release pipeline has completed the deployment successfully, let’s go
back to your function app and check whether an Azure function named Functionl has
been created. As shown in Figure 15-28, your function now contains a function named
Functionl. Let’s get the function URL of this function and test it.

Home > funcchapter15

(.} funcchapter15 | Functions

Function App

£ Search (Ctrl+/) « F add () Refresh [Delete

> Qverview

B Activity log | O Filter by name...
A, Access control (IAM)
E MName T Trigger T
L4 Tags
f ! HTTP
£? Diagnose and solve problems () Function

Q@ Security

" Events (preview)
Functions
I} Functions
App keys
Figure 15-28. Check the functions present in the function app
398

CHAPTER 15 DEPLOYING YOUR AZURE FUNCTIONS USING A CI/CD PIPELINE WITH AZURE DEVOPS

Open the web browser and paste the function URL along with the query string
?name=ashirwad to test the function. As shown in the response, your function was
successfully deployed to the function app and is running as expected. See Figure 15-29.

< C & https:;//funcchapter15.azurewebsites.net/api/Function1?code=K6e8eudl4GIV1atouGva)i3aAQDTucGzAEWbrsAgy)OWhRATK Ay TA= = &name= Ashirwad

IP:J.ln, Ashirwad. This HTTP triggered function executed successfully. I

Figure 15-29. Response returned from the function

Summary

In this chapter, you learned about Azure DevOps and the suite of services it offers
briefly. You explored ways to create a build and release pipeline including creating a
build package of your function project in the GitHub repository. You also learned how
to deploy it to an existing function app. In addition, we discussed ways to build and
release pipelines with continuous integration and continuous delivery/deployment. The
objective of this chapter was to explore ways to deploy functions using CI/CD pipelines
using Azure DevOps, but don’t think that just using Azure DevOps means you are
following DevOps. As Donovan Brown says, DevOps is the union of people, process, and
products to enable the continuous delivery of value to your end users. Azure DevOps is
simply a DevOps tool that helps in different phases of the application development cycle,
and using any tool doesn’t mean you are practicing DevOps.

In the next chapter, you will explore ways to deploy and run your function apps in

containers.

399

CHAPTER 16

Running Azure Functions
in Containers

Containers are a popular hosting choice for many applications because they are based
on modern architecture principles. You can package your application and all its hosting
dependencies in a container and run the container on the target platform. This makes
your deployments portable. You can build a strategy to reuse a container across multiple
environments with ease by externalizing the environment-based configurations. You
can save a lot of time setting up the hosting environment for your application using a
container approach. Using Kubernetes-based Event-Driven Autoscaling (KEDA), you
can run your Azure functions as containers in an Azure Kubernetes Service (AKS) cluster.
In the previous chapter, you learned how to implement continuous integration (CI) and
continuous deployment (CD) using Azure Pipelines for Azure Functions. In this chapter,
you will learn how to containerize an Azure function and run it in AKS using KEDA.

Structure of the Chapter

In this chapter, you will explore the following aspects of Azure Functions and KEDA:
e Getting started with containers and AKS
e What serverless Kubernetes and KEDA in Azure are

o Containerizing Azure functions and pushing them to an Azure

container registry

e Deploying the containerized Azure function in AKS using KEDA

401
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_16

https://doi.org/10.1007/978-1-4842-7122-3_16#DOI

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Objectives

After studying this chapter, you will be able to do the following:
e Understand AKS and containers

o Containerize and run Azure functions in AKS using KEDA

Getting Started with Containers and AKS

You may choose to host your application on a physical server or on a virtual machine

in the target environment. In either case, you will spend a considerable amount of
effort installing and configuring the hosting environment for the application. Once the
hosting environment is up and running, you again will spend a good amount of effort
setting up your application and its dependencies. You will repeat the same set of steps
when you need to host the application in another environment. Containers can be an
excellent and intelligent hosting mechanism here. You can build your code, package the
hosting environment and application, and package all the dependencies in a container.
You need to run the container in the target environment without setting up the hosting
environment for the application. This hosting approach saves a lot of time and effort and
is quite popular among developers.

Containers are highly portable. You can build the application container image and
keep it in a container registry. A container registry is a collection of container images. In
the target environment, you need to pull the container image from the container registry
and execute the container image as a container. Once the container starts up, you can
access the environment. You may choose to externalize the configuration settings for
your application and set them up depending on the target environment.

Containers are an operating system-level virtualization. In the target environment
where the container runs, you need to install a container engine. Docker is an example
of a container engine. The other popular examples of container engines available
are Containerd, CRI-O, and Mesos. The container engine virtualizes the underlying
operating system and runs the containers as operating system-level threads. Containers
do not need an operating system (OS) of their own, because they run on top of the
operating system that gets virtualized by the container engine. In virtual machines
(VMs), the underlying hardware infrastructure is virtualized by virtualization software
like Hyper-V, and the virtual machines run on top of the virtualized environment.

402

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

The virtual machines must have an operating system of their own, and hence the virtual
machines are heavier than containers.

In a production scenario, your application will comprise loosely coupled
components or services, and you may choose to host each of these services in a
container. For example, say your application has a user interface component, a business
layer component, and a data access component. You have designed these components
to be loosely coupled. Your application will have three containers hosting each of these
components. For complex applications, you may have more components or services, so
the number of containers will be higher. You need to manage each of these containers
so that they are highly available, scale independently, are fault-tolerant, and should be
able to communicate among themselves securely. You need a solution to orchestrate
these containers and manage them on your behalf. Container orchestrator solutions like
Docker Swarm or Kubernetes can help here. Kubernetes is an open source container
orchestrator solution developed by Google. It consists of a master node, called Control
Plane, and child nodes where your application containers run inside pods. You plan the
number of pods needed to run your container, the container images that the containers
will use, and other such details and then instruct the Control Plane node to schedule and
execute the application containers in the child nodes. The Control Plane node runs these
containers inside the pods in the nodes based on your plan. The pods can run a single
container in most cases and can also run multiple containers in complex scenarios. The
Control Plane node makes sure that the containers running inside the pods are highly
available and are fault tolerant.

You can plan a set of pods running identical containers in a replica set. A replica set
is a group of identical pods. Each of the pods in the replica set is called a replica. You
can define the number of pods running identical containers or replicas in the node. If
one replica goes down or crashes, the Control Plane node spins up another replica. It
makes sure that the number of pods running identical containers or replicas is always
maintained in the replica set. This mechanism guarantees high availability and makes
your application fault tolerant from an infrastructure perspective. These identical pods
can scale independently based on the incoming requests. You can also scale the nodes.

Setting up a Kubernetes cluster is cumbersome and needs much effort. Once the
cluster is set up, you need to keep the Control Plane node operational and manage all
infrastructure aspects for the Control Plane node. It takes a reasonable amount of time
to create a Kubernetes cluster. Azure provides a managed Kubernetes solution called
Azure Kubernetes Service. AKS abstracts the underlying infrastructure for the Control

403

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Plane and manages all the infrastructure and operational aspects on your behalf. You
need to manage the nodes where the application will run. The nodes are usually virtual
machines in the case of AKS. You do not have any control over the Control Plane, and the
underlying Azure infrastructure entirely manages it. In the case of AKS, you can create a
managed Kubernetes cluster in minutes.

Note Containers are operating system—Ilevel virtualizations and are lightweight.
You can package your application along with the hosting environment and run it
in the target environment. Kubernetes orchestrates and manages the application
containers. Kubernetes consists of the master node called Control Plane that
controls the child nodes running the application container. AKS is a managed
Kubernetes offering on Azure and abstracts the Control Plane from you.

What Is Serverless Kubernetes and KEDA in Azure?

AKS uses virtual machines as nodes and runs the application containers inside pods
in the virtual machines. It provides an excellent scaling mechanism where additional
virtual machines get added when the number of incoming requests increases, and the
extra virtual machines get decommissioned when the number of incoming requests
decreases. However, it takes some time for the virtual machines to spin up and be ready
to serve the requests. The incoming traffic surge does not get addressed immediately.
Hence, there is a delay in managing the additional incoming requests. You can use
serverless nodes where Azure container instances are used as nodes instead of virtual
machines to handle such scenarios. Azure container instances can spin up very fast
and instantly start serving the additional incoming requests without adding any delays.
Your nodes can scale rapidly and add many additional nodes in no time when Azure
container instances are used as nodes. These serverless nodes use the virtual Kubelet
technology and use Azure container instances as nodes in the Kubernetes cluster. Azure
container instances are much cheaper than virtual machines, and you save a lot of
money when you use serverless nodes.

You can containerize the Azure functions and run them in the AKS cluster
using KEDA. This mechanism brings a true serverless experience to the AKS. These
containerized functions can run both on virtual machines and on Azure container

404

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

instances-based nodes. The Azure Functions runtime executes the application code
for the functions, and the scaling is taken care of by the KEDA component. The KEDA
component does the job of the Azure function scale controller.

Note Virtual Kubelet helps you run your containerized application on Azure
container instances in the AKS cluster. KEDA helps you run your containerized
Azure functions on the AKS cluster.

Containerize Azure Functions and Push Them
to the Azure Container Registry

Now let’s containerize an Azure function and push it to the Azure container registry.
Once you have the Azure function container image in the Azure container registry, you
can run it in the AKS cluster.

As a prerequisite, you should have the following installed on your local system. You
can read the official documentation for these tools available on their websites if you
need more information.

e Azure CLI

e Azure Functions Core Tools
¢ Kubectl

e Docker Desktop

Let’s create an Azure container registry where you can push the containerized
function image. Go to the Azure portal and click “Create a resource.” See Figure 16-1.

Azure services

== (%) 3

Create a Resource Azure Active
resource groups Directory

Figure 16-1. Click “Create a resource”

405

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Click the Containers tab and then click Containers Registry. See Figure 16-2.

Create a resource

Get started [# Search services and marketplace

Recently created
y Featured Seeall

Categories Container Instances
Create | Docs | MS Learn
Al + Machine Learning

Analytics Container Registry
Create | Docs | MS Learn

Blockchain
Compute Kubernetes Service
I Containers I Create | Docs | MS Learn

Databases @ Web App for Containers

Developer Tools Create | Docs | MS Learn

Figure 16-2. Click Container Registry

Provide the subscription details, resource group, name, location, and pricing tier for
the Azure container registry. Click “Review + create.” See Figure 16-3.

406

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

@ Create container registry

Basics Networking Encryption Tags Review + create

Azure Container Registry allows you to build, store, and manage container images and

types of container deployments. Use Azure container registries with your existing conta
pipelines. Use Azure Container Registry Tasks to build container images in Azure on-de
source code updates, updates to a container's base image, or timers. Learn more

Project details

Subscription * |

Resource group * [rg-book

Create new

Instance details

Registry name * | acrforbookdemo{
Location * I East US
Availability zones (© Enabled

sre enabled on pre|
sility zones. Learn mor

SKU* @ | standard

<Previous [Next:Networking> |

Figure 16-3. Provide the basic details for the container registry

Click Create. This action will spin up the Azure container registry. See Figure 16-4.

407

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Basics Networking Encryption Tags Review + create
Registry details
Basics
Registry name acrforbookdemo
Subscripton —
Resource Group rg-book
Location East US
Availability zones Disabled
SKU Standard
Networking
Allow public network access Yes
Encryption
Customer-Managed Key Disabled
Identity None
Key Vault None
[< Previous | Next >

Figure 16-4. Create the container registry

Now let’s open the command prompt locally and execute the command in
Listing 16-1 to initialize the creation of a .NET Core-based Azure Functions App Service

that can run in a Docker container.

Listing 16-1. Create Function App Service
func init . --docker

You will be prompted to select a worker runtime environment for the Azure function.
Select dotnet.

Execute the command shown in Listing 16-2 to create an HTTP-triggered function
in the Azure Functions service. Select “Http trigger” when prompted to select the trigger
template for the Azure function. Provide the name of the function when prompted.

408

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS
Listing 16-2. Create an HTTP-Triggered Function
func new

When the command in Listing 16-2 completes successfully, the HTTP-triggered
Azure function gets generated. Now let’s containerize the default Azure function that was
generated without modifying any code. Execute the command in Listing 16-3. You are
creating a container image named keda_func with the image tag as latest.

Listing 16-3. Build the Container Image for the Azure Function
docker build -t keda func:latest .

Now let’s run the container image you created locally using the command in
Listing 16-4. The container will run on port 8080. The docker run command executes
the container image. The --publish option specifies that port 8080 of the local system,
where you are running the docker run command, gets mapped to port 80 of the
executing container. The --detach option specifies that the container image runs in the
background, and the --name option specifies the name of the executing container.

Listing 16-4. Run the Container Image for the Azure Function Locally

docker run --publish 8080:80 --detach --name keda func keda func:latest
Let’s browse the function app running inside the container using the following URL:

http://localhost:8080/

See Figure 16-5.

409

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

&< - C | @ httpy//localhost:8080

Microsoft Azure

Your Functions 3.0 app

is up and running

Azure Functions is an event-based serverless
compute experience to accelerate your
development.

Learn more @

Figure 16-5. Azure function running inside the container

Now let’s push the containerized Azure function to the Azure container registry. You
need the admin credentials for the Azure container registry. Go to the Azure container
registry you created in the Azure portal. Click the “Access keys” tab. Enable the admin
user and copy the username and the password. See Figure 16-6.

o acrforbookdemo | Access keys

¥ Container registry

lp Search (Ctrl+/) “ Registry name l acrforbookdemo

& Overview Login server l acrforbookdemo.azurecr.io

E Activity log
Admin user © o Enabled

pR Access control (|AM)

@ T Username I acrforbookdemo |
& Quick start Name Password

7 Events password |

Settings password2 2w+ NZTkyWBIN4INBX =kc
I. Access keys I

@ Encryption

Figure 16-6. Enable the admin user for the Azure container registry

410

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Now let’s execute the Docker command in Listing 16-5 and provide the admin
credentials for the Azure container registry when prompted. Replace {ACR} with the
name of the Azure container registry in the command.

Listing 16-5. Authenticate with the Azure Container Registry
docker login {ACR}.azurecr.io

Execute the command in Listing 16-6 to tag the container image to the Azure container
registry. Replace {ACR} with the name of the Azure container registry. The keda_func value
is the name of the container image you created earlier for the Azure function app.

Listing 16-6. Tag the Azure Function Container Image with the Azure Container
Registry
docker tag keda func:latest {ACR}.azurecr.io/keda func:latest

Now let’s push the container image to the Azure container registry using the
command in Listing 16-7. Replace {ACR} with the name of the Azure container registry.

Listing 16-7. Push the Container Image to the Azure Container Registry

docker push {ACR}.azurecr.io/keda func:latest

Go back to the Azure container registry in the Azure portal. Click the Repositories
tab, and you will see the Azure function container image there. See Figure 16-7.

o, acrforbookdemo | Repositories

Container registry

|/’3 Search (Ctrl+/) | « () Refresh

T

Identity | } bearch to filter

. Repositories T
“@ Networking P *

Q Security

ﬂ Locks

Services

I Repositories I

@5 Webhooks

Figure 16-7. Azure function container image in the Azure container registry
411

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Deploy the Containerized Azure Functions in AKS

Using KEDA

Now let’s create an AKS instance and run the containerized Azure function on it. Go to

the Azure portal and click “Create a resource.” See Figure 16-8.

Azure services

+

Create a
resource

(%)

Resource
groups

>

Azure Active
Directory

Figure 16-8. Create a new resource

Click the Containers tab and then click Kubernetes Service. See Figure 16-9.

Create a resource

Get started

Recently created

Categories

Al + Machine Learning
Analytics
Blockchain

Compute

[/’7 Search services and marketplace

Featured Seeall

Container Instances
Create | Docs | MS Learn

Container Registry
Create | Docs | MS Learn

I Containers

Kubernetes Service

Create | Docs | MS Learn

Databases

Developer Tools

E B E D

Web App for Containers
Create | Docs | MS Learn

Figure 16-9. Click Kubernetes Service

412

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Provide the subscription, resource group, name, location, and other necessary basic
details for the Azure Kubernetes Service instance. Provide 1 as the number of nodes. See
Figure 16-10.

Home > Create a resource >

Create Kubernetes cluster

Subscription * © |] i
Resource group * | rg-book ~

Cluster details

Kubernetes cluster name * O I akskedademo v

Region * © | (US) East US ~

Availability zones © | Zones 1,23 ~

Kubernetes version * @ | 1.19.9 (default) el

Primary node pool

The number and size of nodes in the primary node pool in your cluster. For production workloads, at least 3 nodes are
recommended for resiliency. For development or test workloads, only one node is required. If you would like to add
additional node pools or to see additional configuration options for this node pool, go to the ‘Node pools’ tab above. You will
be able to add additional node pools after creating your cluster. Learn more about node pools in Azure Kubernetes Service

Node size * O Standard DS2 v2
Change size

Mode count * (@ O

< Previous | Next:Node pools =

Figure 16-10. Provide the basic details to AKS

Go to the Authentication tab and select “System-assigned managed identity” as
the authentication method. You need to integrate the Azure container registry that you
created earlier with AKS. You can do this integration in the portal if you select “System-
assigned managed identity” as the authentication method. See Figure 16-11.

413

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Create Kubernetes cluster

Basics Node pools | Authentication | Networking | Integrations |Tags Review + create

Cluster infrastructure
The cluster infrastructure authentication specified is used by Azure Kubernetes Service to manage cloud resour|
the cluster. This can be either a service principal c or a system-assigned managed identity o

Authentication method O Service principal @ System-assigned managed identity

Kubernetes authentication and authorization
Authentication and authorization are used by the Kubernetes cluster to control user access to the cluster as we|
user may do once authenticated. Learn more about Kubernetes authentication cf

) .
Role-based access control (RBAC) @ (® Enabled (O Disabled

AKS-managed Azure Active Directory O O Enabled @ Disabled

Node pool OS disk encryption
By default, all disks in AKS are encrypted at rest with Microsoft-managed keys. For additional control over encn
supply your own keys using a disk encryption set backed by an Azure Key Vault. The disk encryption set will be
encrypt the OS disks for all node pools in the cluster. Learn more o

Encryption type [(Default) Encryption at-rest with a platform-managed key

I < Previous Next : Networking >

Figure 16-11. Provide the authentication method

Go to the Integrations tab and select the Azure container registry created earlier.
Click “Review + create.” See Figure 16-12.

414

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Basics Node pools Authentication Networking Integrationsl

Connect your AKS cluster with additional services.

Azure Container Registry
Connect your cluster to an Azure Container Registry to enable seamless deploym)
create a new registry or choose one you already have. Learn more about Azure {J

Container registry acrforbookdemo

Create new

Azure Monitor
In addition to the CPU and memory metrics included in AKS by default, you can ¢
comprehensive data on the overall performance and health of your cluster. Billing
settings.

Learn more about container performance and health monitoring
Learn more about pricing

Container monitoring O Enabled @ Disabled

Azure Policy
Apply at-scale enforcements and safeguards for AKS clusters in a centralized, con
Learn more about Azure Policy for AKS &

Azure Policy (O Enabled (®) Disabled

Revie eate [< Previous ‘ | Next : Tags >]

Figure 16-12. Select the Azure container registry

Click Create. This action will spin up AKS. See Figure 16-13.

415

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

@ validation passed

Basics Node pools Authentication Networking Integrations ~ Tags Review + create
Basics

Subscription I
Resource group rg-book

Region East US

Kubernetes cluster name akskedademo
Kubernetes version 1.199

Node pools

Mode pools 1

Enable virtual nodes Disabled

Enable virtual machine scale sets Enabled

Authentication

Authentication method System-assigned managed identity
Role-based access control (RBAC) Enabled
AKS-mananed Azure Active Directar Nisahled
[< Previous Mext > Download a template for automation

Figure 16-13. Create AKS

Once the Azure Kubernetes Service instance gets created, go to the command
prompt on your local system and log in to Azure. Provide your Azure credentials when
prompted. See Listing 16-8.

Listing 16-8. Log In to the Azure Kubernetes Service Instance
az login

Execute the command in Listing 16-9 to authenticate with the Azure Kubernetes
Service instance that you created. Replace {AKS Name} with the name of the Azure
Kubernetes Service instance that you created, and replace {Resource Group} with the
name of the Azure Kubernetes Service resource group.

416

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS
Listing 16-9. Authenticate with Azure Kubernetes Service

az aks get-credentials --resource-group "{Resource Group}" --name
"{AKS Name}"

Execute the command in Listing 16-10 to generate the deployment YAML file that
you will use to deploy the containerized Azure function to Azure Kubernetes Service.
Replace {ACR} with the name of the Azure container registry where you pushed the
container image earlier.

Listing 16-10. Generate the Kubernetes Deployment YAML File

func kubernetes deploy --name "kedafunc" --image-name "{ACR}.azurecr.io/
keda func:latest" --dry-run > deploy.yaml

A deploy.yanml file will get generated that you can apply to the Kubernetes cluster
using the command in Listing 16-11.

Listing 16-11. Apply the Generated YAML to the Kubernetes Cluster
kubectl apply -f deployfunc.yaml

You can verify if the pod hosting the Azure function container is up and running
using the command in Listing 16-12. See Figure 16-14.

Listing 16-12. Verify Whether the Pod Is Running

kubectl get pods

B Command Prompt

“:\Abhishek\Apress\KEDA>kubectl get pods
NAME READY STATUS RESTARTS AGE
kedafunc-http-569d87f564-jkbmg 1/1 Running @ 5m55s

C:\Abhishek\Apress\KEDA>

Figure 16-14. Verify whether the pod is running

417

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Now let’s execute the command in Listing 16-13 to get the external IP address that
you can use to browse to the Azure function running inside Azure Kubernetes Service.
See Figure 16-15.

Listing 16-13. Get the External IP

kubectl get services

B8 Command Prompt

C:\Abhishek\Apress\KEDA>kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
kedafunc-http LoadBalancer 10.0.157.84 52.191.16.52 8@:31937/TCP
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP

C:\Abhishek\Apress\KEDA>

Figure 16-15. Get the external IP

Browse to the external IP address. See Figure 16-16.

« = A Not secure | http://52.191.16.52

Microsoft Azure

Your Functions 3.0 app

is up and running

Azure Functions is an event-b erverless
comput ience to accel
development.

Learn more @

Figure 16-16. Browse to the Azure function running inside Azure Kubernetes
Service

418

CHAPTER 16 RUNNING AZURE FUNCTIONS IN CONTAINERS

Summary

In this chapter, you learned how to containerize an Azure function and run it in the

Azure Kubernetes Service cluster using KEDA. You explored what containers and

Kubernetes are and how they provide modernized hosting support. You learned how to

create an Azure container registry, push the containerized Azure function image to the

Azure container registry, and run the image in the Azure Kubernetes cluster.

The following are the key takeaways from this chapter:

You can containerize your application and hosting dependencies and

run your application in the target environment.

Containers are operating system-level virtualization and are
lightweight compared to virtual machines.

Kubernetes orchestrates the containers and manages them.

You can run the containerized application in the Kubernetes cluster
nodes that can be virtual machines or Azure container instances.

Serverless nodes are Azure container instances that run the
application containers.

KEDA helps you run containerized Azure functions in the Azure
Kubernetes Service cluster.

In the next chapter, you will explore how to add cognitive capabilities to Azure

Functions.

419

CHAPTER 17

Adding Cognitive
Capabilities to Your
Azure Functions

Artificial intelligence has become an important part of modern application
development. It has made its mark in every domain one can think of. Almost every app
that comes onto the market has an intelligent solution inside it. Apps from simple chat
applications to virtual assistants have cognitive capabilities.

In previous chapters, we discussed ways to develop and deploy Azure functions. You
explored different bindings and triggers of Azure functions by building applications to
solve various use cases. With the knowledge gathered in the previous chapters, you are
well equipped to build serverless solutions using Azure functions. In this chapter, you
will add one more skill to your arsenal by adding cognitive capabilities to your Azure
functions to build intelligent serverless solutions.

You will be leveraging the power of Azure Cognitive Services to build intelligent
serverless solutions with Azure Functions. In this chapter, you will learn ways to add
cognitive capabilities to your functions with the help of .NET SDKs for Azure Cognitive
Services.

Structure of the Chapter

This chapter will explore the following aspects of HTTP triggers and Azure SQL:
e Getting started with Azure Cognitive Services

o Getting started with Azure Text Analytics

421
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_17

https://doi.org/10.1007/978-1-4842-7122-3_17#DOI

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

o Creating a serverless application to analyze feedback using sentiment
analysis

o Creating a language-based document classifier serverless solution

Objective

After studying this chapter, you will be able to do the following:

o Create intelligent serverless solutions using the Azure Functions
service

o Interact with Azure Cognitive Services from Azure Functions

Getting Started with Azure Cognitive Services

Building intelligent solutions from scratch by leveraging the power of artificial
intelligence can require highly skilled employees who have specific expertise, which
can be quite expensive. Microsoft Azure provides a set of services in Azure Cognitive
Services to help you write all algorithms from scratch to add cognitive capabilities to
your applications to make them intelligent.

With the help of Azure Cognitive Services, you will make an API call to the
appropriate service to embed the desired cognitive capability into your applications.
Azure Cognitive Services can also be consumed using the available SDKs.

Azure Cognitive Services offer five main categories of services to help with cognitive
tasks.

o Decision: With the help of the services in this category, you can
enable your application to make smart decisions. Services such as
Anomaly Detector, Content Moderator, and Personalizer fall into this
category.

e Language: With the help of the services in this category, you
can power your applications to gather and extract insights from
unstructured textual data. Services such as Text Analytics, Immersive
Reader, Translator, Language Understanding, and the QnA Maker
API all fall into this category.

422

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

o Search: With the help of the services in this category, you can enable
your applications to look out for web pages, images, and news over
the Internet. Bing web search falls into this category.

o Speech: With the help of the services in this category, you can enable
your application to have speech capabilities. Services such as Speech
to Text, Text to Speech, Speech Translation, and Speaker Recognition
fall into this category.

o Vision: With the help of the services in this category, you can process
and analyze image- and video-based content. Services such as
Computer Vision, Custom Vision, Face, Form Recognizer, and Video
Indexer fall into this category.

Azure Cognitive Services helps organizations and developers embrace Al with ease
to build intelligent solutions. It provides developers and organizations with the ability to
build intelligent solutions in a short time for less money than it would cost otherwise. In
this chapter, you will build two intelligent solutions using Azure Cognitive Services and
Azure Functions. In the first solution, you will build a serverless API to process, analyze,
and predict the sentiment of the feedback. Later, you will create a serverless solution for
documents depending on the language they are written in using Azure Text Analytics.

Getting Started with Azure Text Analytics

In a world where almost 6,000 tweets are being tweeted every second, you know that
text analytics is an important area of focus. For beginners, text analysis is the process of
gathering insights from textual data to make well-informed decisions. For firms, such
textual data from various social media sites can help them understand their customers
and gather insights to make well-informed decisions by analyzing and processing such
data.

Although there are well-established algorithms like naive Bayes, support vector
machines (SVMs), and linear discriminant analysis (LDA) that have been developed
over the years in the field of natural language processing (NLP), extensive experience
is required to build such algorithms from scratch. Azure Text Analytics allows you to
perform text analytics on unstructured data without requiring you to have expertise in
the field or worry about which algorithm to use to get the task done.

423

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

You can perform the following tasks with the help of the Azure Text Analytics API or

the SDKs:

Sentiment analysis: With sentiment analysis, you can find out insights
about a person’s impression or opinion on a topic or brand from text.
Text Analytics classifies text as positive, negative, neutral, or mixed
and gives a confidence score.

Key phrase extraction: With key phrase extraction, you can identify
the essence of the content or the talking point from the text.

Language detection: With language detection, you can identify the
language text was written in. It returns a language code along with
the confidence score.

Named entity recognition: With named entity recognition, you
can find and identity entities from text. Entities can be a place,
organization, or person.

To build a serverless API to perform feedback analysis, you will use the sentiment

analysis feature of Azure Text Analytics. To use Azure Text Analytics, you will have

to create a Text Analytics resource in Azure and get the API key along with the URL

endpoint. In the next section, you will create an Azure Text Analytics service in the Azure

portal.

Create an Azure Text Analytics Resource
in the Azure Portal

Go to the Azure portal, search for Cognitive Services in the search box, and click it. See

Figure 17-1.

Microsoft Azure £ cognitive Services|

Services See all

Azure serv

@ Cognitive Services

—|— %V senvice Health

Figure 17-1. Search for Cognitive Services

424

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Now Click Create, as highlighted in Figure 17-2. This will pop up a side screen that

will redirect you to the Marketplace.

Home >

Cognitive Services =

Default Directory

+ Create Eé,l! Manage view O Refresh + Exportto CSV q*_é) Open query Assign tags

| Filter for any field...] Subscription == Azure Pass - Sponsorship Resource group == all X

Showing 0 to 0 of 0 records.

Figure 17-2. Click Create to go to the Marketplace

Type Text Analytics in the search box and press Enter. Now, select the Text Analytics

service offered by Microsoft. See Figure 17-3.

Home > Cognitive Services >

Marketplace

Private Marketplace

I}J Text Analytics X I Pricing : All X Operating System : All <

Favorites
Publisher name : All X
Recently created
Showing results for 'Text Analytics".
Service Providers

Showing 1 to 20 of 105 results.

Categories
Get Started MAQ @
Software EH
Al + Machine Learning . .
Text Analytics Playground - Text Analytics Edge Module - Language
Analytics Discover Insights Detection (Text Analytics)
MAQ Software Microsoft Microsoft
Blockehain
Compute
P Saas Azure Service lot Edge Modules
Containers Discover maaningful ingights for taxt An Al service that enables you to Analyze text on the edge, on
feedback generated from various uniack insights from natural premises and in the cloud using
Databases customer channels language text using sentiment container support.
Software plan starts at
Developer Tools Free
DevOps Set up = subscribe <@ Create @ Create @

Figure 17-3. Search for the Text Analytics service in the Marketplace

425

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Click Create, as shown in Figure 17-4, to create the Text Analytics service.

Home > Cogpnitive Services > Marketplace >

Text Analytics =

Microsoft

Text Analytics © ado o ravorites

Microsoft

=1 ‘¢ ¥e ¥¢ ¥t ¥% 0.0 (0 ratings)
=]
E

Figure 17-4. Create the Text Analytics service

Fill in all the required information. Click “Review + create.” See Figure 17-5.

Home > Cognitive Services > Marketplace > Text Analytics >

Create Text Analytics

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and

manage all your resources.

Subscription * (D) I Azure Pass - Sponsorship (45abecfd-0297-4b63-b8e9-9e6863ael1be) v I

Resource group * O l (New) rg-ch-17

M |

Create new

Instance details

Region* @ I Central India v I
Mame* O | ta-ch-17 o |
Pricing tier* (@ | Free FO (5K Transactions per 30 days) ~ |

View full pricing details

< Previous I Next : Virtual network >

Figure 17-5. Click “Review + create”

426

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Note Since you are just learning ways to use the Text Analytics service in your
functions, you will be using the free FO tier in this chapter. With the FO tier, you can
make 5,000 calls each month. But it is advisable to go for a standard plan if you
want to use the Text Analytics service for a production-grade application.

Now a validation check will take place on the values you entered in the previous
screen. If the validation is successful, you can click Create to create the Text Analytics
resource in Azure. See Figure 17-6.

Home > Cognitive Services > Marketplace > Text Analytics >

Create Text Analytics

@ \alidation Passed

with the same billing frequency as my Azure subscription; and (c) agree that Microsoft may share my contact, usage
and transactional information with the provider(s) of the offering(s) for support. billing and other transactional
activities. Microsoft does not provide rights for third-party offerings. See the Azure Marketplace Terms for additional
details.

Basics

Subscription Azure Pass - Sponsorship

Resource group rg-ch-17

Region Central India

Name ta-ch-17

Pricing tier Free FO (5K Transactions per 30 days)

Virtual network

Type All networks, including the internet. can access this resource.

| < Previous Next Download a template for automation

Figure 17-6. Click Create

After the resource has been created, go to the resource and click Keys and Endpoint
in the sidebar of the screen. See Figure 17-7.

427

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

ta-ch-17 | Keys and Endpoint

Cognitive Services

£ Search (Ctrl=/) « U Regenerate Keyl 4 Regenerate Key2
B overview
B Activity leg
0 These keys are used to access your Cognitive Service API. Do not share your keys. Store them securely- for
fo Access control (IAM) example, using Azure Key Vault We also recommend regenerating these keys regularly. Only one key is necessary
to make an APl call. When regenerating the first key, you can use the second key for continued access to the
¢ T service.
f Diagnose and solve problems
Show Keys
RESOURCE MANAGEMENT
KEY 1
& Quick start I Im
Keys and Endpoint I
I & E Kev 2
4 Pricing tier m
> Networking Endpaint
& Identity | https://ta-ch-17.cognitiveservices azure.com/ [0 |
@ eilling By Subscription Location (D)
1! Froperties centralindia [Tn}
B Locks

Figure 17-7. Go to Keys and Endpoint

Get the values of the key and endpoint and store them somewhere safe. You will use
them in the next section to build a serverless API to perform sentiment analysis.

Build a Serverless API to Analyze Feedback Using
Sentiment Analysis

In this section, you'll build an HTTP-triggered Azure function to process and perform
sentiment analysis of the feedback sent in the request payload using Azure Text Analytics
and return the sentiment of the feedback as the response to the user.

Open Visual Studio 2019 and click “Create a new project.” See Figure 17-8.

428

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Visual Studio 2019

Open recent

I P

4 Today
- codewithashirwad 4/18/2021 12:25 PM
D:\Codewithashinvad-myblog
4 This week
';4__| testAPLsIn

C:h\Users\Ashirwad Satapathi\sourcéirepositestAP|

4/16/2021 3:43 PM

m inventoryApp.sin 4/16/2021 3:39 PM

C:h\Users\Ashirwad Satapathivsourcé\reposiinventoryApp
4 This month

m MyLogicApp.sin
CAUsers\Ashirwad SatapathivsourcelreposiMylogicApp

4/5/2021 5:27 PM

m ServerlessAPIs.sIn 3/31/2021 £:49 AM

Get started

€% Connect to a codespace

Create and manage cloud-powered development
environments

%, Clone a repository
Get code from an online repository like GitHub or
Azure DevOps

"@ Open a project or solution

Open a lecal Visual Studio project or .sln file

,""l Open a local folder

Mavigate and edit code within any folder

5]

Create a new project

Choose a project template with code scaffolding
to get started

Continue without code <

Figure 17-8. Create a new project in Visual Studio

Select Azure Functions for the project template and click Next. See Figure 17-9.

429

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Create a new
. Search for templates (Alt+5) P~ Clear all
project

cz - Azure - Cloud -
Recent project templates

< > Azure Functions

o ASP.NET Core Web A template to create an Azure Function project.
=C]

(e
Al c# Azure Cloud

Azure Resource
< Group S Service Fabric Application

A project template for creating an always-on, scalable, distributed application with
Microsoft Azure Service Fabric.

<2 Azure Functions =
c# Azure Cloud
_ Windows Forms
El App (.NET < Azure Cloud Service (classic)
Framework) A preject for creating a scalable service that runs on Microsoft Azure.
= Mobile App s Cc# Azure Cloud

(Xamarin.Forms)

Q Azure Resource Group

= :SP'I":E{':?:,NET c» This template creates an Azure Resource Group deployment project. The deployment
E PRI IrkJ : project will contain artifacts needed to provision Azure resources using Azure
bl Resource Manager that will create an environment for your application.
B Conscle App{.NET s C= Azure Cloud

Figure 17-9. Select Azure Functions as the project template

Fill in the project name, location, and solution name and click Next. See Figure 17-10.

430

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Configure your new project

Azure Functions © amre Cloud

Project name

IFeedba:kAnalyzer I
Location

I C:\Users\Ashirwad Satapathi\source\repos 'I

Solution name)

I FeedbackAnalyzer I

[] Place sclution and project in the same directory

Figure 17-10. Fillin the project details

Select “Http trigger” as the trigger type, leave the other default values, and then click
Create. See Figure 17-11.

431

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Create a new Azure Functions application

Azure Functions v3 (MET Core) -

Event Grid trigger * Storage account (AzureWeblobsStorage)

A C# functicn that will be run whenever an event grid receives a new event Storage emulator

A Some capabilities may require 2n Azure storage
Event Hub trigger account.

A C# function that will be run whenever an event hub receives a new event Authorization level

Function
Http trigger

A C# function that will be run whenever it receives an HTTP request L] enable Open Api Support

loT Hub trigger

A C# function that will be run whenever an iot hub receives a new event on the event hub
endpeint.

Kafka output

A C# functicn that will send a message to 2 specified Kafka Topic

Kafka trigger
A C# function that will be run whenever a message is added to a specified Kafka Topic

Get started with Azure Functions

Figure 17-11. Select “Http trigger” and Azure Functions V3

Now, Visual Studio will generate an HTTP-triggered function. Let’s open the Package
Manager Console and type in the command shown in Listing 17-1 to install the Azure Text
Analytics SDK. Alternatively, you can install this SDK using the NuGet package manager.

Listing 17-1. Install Azure Text Analytics
Install-Package Azure.AI.TextAnalytics -Version 5.0.0

Once you have installed the SDK, open the local.setttings. json file and add
the API key and endpoint of the Text Analytics service as a key-value pair, as shown in
Listing 17-2.

Listing 17-2. Add API Key and Endpoint to local.settings.json

{
"IsEncrypted": false,

"Values": {
"AzurelebJobsStorage": "UseDevelopmentStorage=true",

432

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

"FUNCTIONS WORKER RUNTIME": "dotnet",
"api-key": "Enter your API Key",
"endpoint”: "Enter your Endpoint"

Note Storing function secrets or sensitive information in the local.settings.
json file or hard-coding such information in a variable is not advisable. We
recommend using a key vault to store function secrets.

As you add the API key and URL endpoint and install the Azure Text Analytics
SDK, let’s create a Plain Old CLR Object (POCO) class named Payload.cs. This class
will represent the data model of the request payload by deserializing it to later get the
feedback sentiment and send the model in the response to the user by updating the
feedbackSentiment property of the model. See Listing 17-3.

Listing 17-3. Create a POCO Model Called Payload.cs

public class Payload
{
public string feedback { get; set; }
public string feedbackSentiment { get; set; }

}

Now that you have created the POCO model and updated the local.settings.
json file by adding the values of your API key and endpoint as key-value pairs, let’s start
building the feedback analyzer function. First, you will deserialize the content sent from
the user, in the request body, and store it in a variable. Then, you will have to create an
object called client of the TextAnalyticsClient type to use the Azure Text Analytics
SDK along with passing the endpoint and API key as parameters. Once we have created
the object, let's make a call to the AnalyzeSentiment method of the client object by
passing the feedback sent in the request payload. The AnalyzeSentiment method
returns a response of DocumentSentiment with different properties such as sentiment,
confidence, and warning to name a few. In this case you are using the Sentiment
property and will assign the value of this sentiment property of the response returned

433

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

by the AnalyzeSentiment method to the feedbackSentiment property of your POCO
model. Finally, you will send an OK response along with the POCO model back to the
client. If there are any exceptions, a BadRequest response is returned to the client. See
Listing 17-4.

Listing 17-4. Get the Feedback Sentiment

using System;

using System.IO;

using System.Threading.Tasks;

using Azure;

using Azure.AI.TextAnalytics;

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Llogging;
using Newtonsoft.Json;

namespace FeedbackAnalyzer

{

public static class FeedbackAnalyzer

{
private static readonly AzureKeyCredential credentials = new
AzureKeyCredential(Environment.GetEnvironmentVariable("api-key"));
private static readonly Uri endpoint = new Uri(Environment.GetEnvir
onmentVariable("endpoint"));
private static TextAnalyticsClient client = new
TextAnalyticsClient(endpoint, credentials);

[FunctionName("FeedbackAnalyzer")]

public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Function, "get", "post",
Route = null)] HttpRequest req,
ILogger log)

434

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

{
try
{
string requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
var data = JsonConvert.DeserializeObject<Payload>(requestB
ody);
data.feedbackSentiment = client.AnalyzeSentiment(data.
feedback).Value.Sentiment.ToString();
return new OkObjectResult(data);
}
catch (Exception ex) {
return new BadRequestObjectResult(ex.Message);
}
}

Note We created a static client object of type TextAnalyticsClient, as this
allows us to reuse the client object in different function invocations, instead of
creating a new object for every invocation.

Test the FeedbackAnalyzer Function Using Postman

Let’s run the function project and start the Azure Functions Core Tools to test your
Feedback Analyzer function and copy the function endpoint. See Figure 17-12.

435

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

B C\Users\Ashirwad Satapathi\AppData\Local\AzureFunctionsTools\Releases\3.24.0\cli_x64\func.exe - a

hzure Functions Core Tools
[core Tools Version: 3.8.3442 Commit hash: 6bfab24b2743f8421475d996482c398d2feda% @ (64-bit)
Function Runtime Version: 3.9.15417.€

[2621-64-21T@5:08:13.840Z] Found D:\Feedbackanalyzer\Feedbackanalyzer\Feedback

le configuration.

Functions:

FeedbackAnalyzer: [GET,POST] http://localhost:7@71/api/Feedbac

For detailed output, run func with --verbose flag.
[2021-€4-21T@5:€8:23.518Z] Host lock lease acquired by instance ID '€E8EE8CECEEECEREELEREER079865EB5" .

alyzer.csproj. Using for user secrets |

Figure 17-12. Get the URL endpoint of the FeedbackAnalyzer function

You will be using Postman to test the FeedbackAnalyzer API by using the URL
endpoint of the function. Let’s open Postman, one of leading collaboration platforms
for API development. Create a new collection and add a request to it to test the HTTP-
triggered Azure function you created in the previous section. Pass the value of the
feedback in the request body and click Send to invoke the FeedbackAnalyzer function
and get the response. See Figure 17-13.

@ rostma [m]
File Esit View Help
Home Waorkspaces ~ Reports Explore Q, Search Postman & & @ sen
Scratch Pad Kew Import Feedback Anatyzer @+ e Mo Environment v @
(5] + = ** New Collection | Fesdback Analyzer B save ~ B
Collections
» CCDays
reml e s I B
APt

w

w

ChmaCell API N
Params Auth Headers (8) Pre-req. Tests Sewings Cookies
Logic app

raw v JSON Beautify
~ MNew Collection
CLT Feedback Analyzer 1 Q1
2 "feedback”:"This is a good product”,
Mock Servers 3 st B “good P L
3 feedbackSentiment®:"
> Test Serverless APls LN |
taanitars
History

Body ~ @ 814s 2088 Save Response v

Fratty Raw Praview Visualize JEON = mQ
1l I
2 feedback”: "This is a good product®,

3 feedbackSentinent”™: "Positive
; I

Figure 17-13. Response from the FeedbackAnalyzer API
436

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

As shown in Figure 17-14, you get an OK response from the FeedbackAnalyzer API

along with the feedback and feedback sentiment in the response body.

Build a Language-Based Document Classifier

Serverless Solution

In this section, you'll further use the language detection feature of Azure Text Analytics

to classify documents based on their language in a Blob container on a scheduled basis

with the help of a timer-triggered function. Your solution will process all the documents

present in one container called source every 24 hours and classify the documents in

terms of the language they are written in; it will also store them in a separate container

called destination and delete the classified Blobs from the source container.

Open Visual Studio 2019 and click “Create a new project.” See Figure 17-14.

Visual Studio 2019

Open recent

[aH
4 Today
13 BlobOCRTimersin 4/22/2021 1:06 PM
CAUsers\ashirwad\source\repos\BlobOCRTimer
4 This week
m FeedbackAnalyzer.sin 4/20/2021 1:48 PM

Chlsershashirwad\source\repos\FeedbackAnalyzer

3 1oTHUbProject.sin 4/19/2021 1:42 PM
ChUsers\ashirwad\source\repos\loTHubProject

m loTDevice.sin 4/19/2021 1:20 PM

ChUsers\ashirwad\source'\repos\loTDevice

] BookstoresWebAPLsln 4/16/2021 11:35 AM
D:\Learning\ASP.NET Core\BookStoresWeb AP

Figure 17-14. Create a new project

Get started

C'é, Connect to a codespace

Create and manage cloud-powered development
environments

¥_ Clone a repository
Get code from an enline repository like GitHub or

Azure DevOps

")@ Open a project or solution

Open a local Visual Studio project or sin file

- Open a local folder

Navigate and edit code within any folder

I‘:‘jﬂé

)

Create a new project

Choose a project template with code scaffolding
to get started

Continue without code -

437

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Select Azure Functions as the project template and click Next. See Figure 17-15.

Create a new
project

Recent project templates

<2 Azure Functions C#

B Console Application C#

S ASP.NET Core Web

API e
98 Class library c#
@ Blazor

WebAssembly App o

Search for templates (Alt+35) -
! ! P s £ Clear all

C= - Azure hd Cloud b

< > Azure Functions
A template to create an Azure Function project.

C# Azure Cloud

Service Fabric Application

A project template for creating an always-on, scalable, distributed application with
Microsoft Azure Service Fabric.

C= Azure Cloud

O Azure Cloud Service (classic)
A project for creating a scalable service that runs on Microsoft Azure.

C# Azure Cloud

& Azure Resource Group

This template creates an Azure Resource Group deployment preject. The deployment
project will contain artifacts needed to provision Azure resources using Azure
Resource Manager that will create an environment for your application.

c# Azure Cloud

Back Next

Figure 17-15. Select Azure Functions as the project template

438

Fill in the project name, location, and solution name and then click Next.
See Figure 17-16.

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Configure your new project

Azure Functions ¢= Awre Cloud

Project name

LanguageBasedDocumentClassifier

Location

C\Users\ashirwad\source\repos -

Sclution name

LanguageBasedDocumentClassifier

D Place solution and preject in the same directory

BaCk

Figure 17-16. Fillin the project details

Select “Timer trigger” as the trigger type, leave the other defaults as they are, and
click Create. See Figure 17-17.

439

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Create a new Azure Functions application

IMure Functions v3 (NET Core) ~I
* Storage account (AzureWebJobsStorage)
¢ RabbitMQ trigger
Sterage emulator - ‘
A C# function that will be run whenever a message is added to a specified RabbitMQ queue
Some capabilities may require an Azure storage
7] sendria secount
Schedule
A function that sends a confirmation e-mail when a new item is added to a particular queue. I
prgreen

Service Bus Queue trigger

A C# function that will be run whenever a message is added to a specified Service Bus queue

Service Bus Topic trigger

A C# function that will be run whenever a message is added to the specified Service Bus topic
SignalR

The following example shows a C# function that acquires SignalR connection infermation using
the input binding and returns it over HTTP.

Timer trigger

A C# function that will be run on a specified schedule

Get started with Azure Functions
Back

Figure 17-17. Select "Timer trigger” and Azure Function V3

Visual Studio will generate a timer-triggered function named functionl. Let’s
remove it and add a new timer-triggered function named DocumentClassifier. Let’s
open the Package Manager console and type in the command shown in Listing 17-1
and Listing 17-5 to install the Azure Text Analytics SDK and the Azure Blob Storage
SDK. Alternatively, you can install it using the NuGet package manager.

Listing 17-5. Install Azure Blob Storage
Install-Package Microsoft.Azure.Storage.Blob -Version 12.8.1

Once you have installed these packages, open the local.settings.json file of your
project and add the key and endpoint from the Text Analytics resource you created
earlier in this chapter. Now, let’s create a storage account in Azure and create two Blob
containers called source and destination for the project.

All your files will initially be uploaded in the source Blob container, and then your
function will classify the documents on the basis of the language they are written in and
store them in the destination container. Once you create the storage account and the
Blob container, let’s go to “Access keys” in the side menu of your storage account screen
in the Azure portal and get the connection string. See Figure 17-18.

440

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Home storageaccchseven
storageaccchseven | Access keys X
Storage scount

Use access keys to authenticate your applications when making requests to this Azure storage account. Stare your access keys securely - for example. using Azure Key Vault - and
o't share them. We recommend regenerating your access keys regulary. You are provided two access keys so that you can maintain connections using ons key while regenerating
* theother

£, storage Explorer (proview)

When you regenerate your access eys, you must update any Azure resources and applications that access this storage account to use the new keys. This action will not interupt
n more about reg ng st access keys o

Settings access fo ditks from your virual machines. Leam more about regenerating starage

Geo-replication | storageaccchseven [a]
@ coms Show keys

& Corfiguration .

. keyl (3

0O Encryption

8 enp Key

@ shaedaccwsssignatere || [I I,

& Networking Connection string

O security e]

Figure 17-18. Get the storage account’s connection string

You need to store this connection string in your local.settings.jsonfileasa
key-value pair. Refer to Listing 17-6 for the local.settings.json file after adding all
the key-value pairs required for your project.

Listing 17-6. Add API Key, Endpoint, and Connection String at local.settings.

json

{
"IsEncrypted": false,

"Values": {
"AzurelebJobsStorage": "UseDevelopmentStorage=true",
"FUNCTIONS WORKER RUNTIME": "dotnet",
"key": "Enter your API key",
"endpoint": "Enter your endpoint",
"connectionString": "Enter your storage account connection string"

Now that you have updated the local.settings. json file of your project, let’s
start working on your DocumentClassifier function. You will have to update the
cron expression of your function to 0 0 10 * * *. This tells your function to run every
day at 10 a.m. After you modify the cron expression, let’s create static objects of
the TextAnalyticsClient and BlobContainerClient types. You will be using the
TextAnalyticsClient type to perform language detection on the content of the
documents uploaded in your source Blob container.

441

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

You will create two static objects of BlobContainerClient types, namely,
sourceClient and destinationClient. sourceClient references all the Blobs present
inside the source container and gives you the ability to modify all the Blobs in it, and
destinationClient does the same for the destination container.

You are going to use two static methods called GetLanguage and
UploadBlobToContainer. The GetLanguage method takes a string parameter and
uses the TextAnalyticsClient object’s DetectLanguage method to identify the
language in which the document was written. The DetectLanguage method returns
aDetectedlLanguage type response. But as you are asked only for the name of the
language, you are returning the name value instead of returning a DetectedLanguage
object from your GetLanguage method.

The UploadBlobToContainer method takes three parameters, of types stream,
string, and BlobContainerClient. The UploadBlobToContainer methods use the
BlobContainerClient object passed as a parameter to upload files to the container
referenced by the object with the help of the UploadBlob method. The name of the Blob
is the value passed in the parameter named blobName, and the Blob content is the value
passed in the parameter named blobData. It wraps the UploadBlob method inside a try-
catch block to handle exceptions. If there’s an exception, the UploadBlobToContainer
will return false, and if it hasn’t run into any exception, then it will return true.

We have discussed the methods we are using in the function, so now let’s discuss the
code used in the Run method of your function. First, we are iterating through all the Blobs
present inside the source container by using the GetBlobs method of the sourceClient
object. Then we get the Blob data with the help of the GetBlobClient method and make
a method call to the GetLanguage method by passing the value of the content of the Blob
as a parameter. Assign the value returned from the GetLanguage method to a variable
called detectedLanguage.

After finding out the language in which the document is written, you make a call
to the UploadBlobToContainer method by passing the destinationClient object, an
interpolated string, and the content of the current Blob item. You pass an interpolated
string to build a string of the format {Language Name}/{Blob Name}. This will ensure
that your Blob is visible in a folder-like format in the Storage Explorer where each folder
will be the name of the language and will contain all the files written in that specific
language. You have the Blob name in this format by default; Blob storage does not
support folders or subdirectories, but you can logically group them by using the / after
the folder or subfolder name as per your requirements.

442

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

The UploadBlobToContainer returns a Boolean response after executing. If it
returns true, then you will delete the file from the source container as it has already been
classified and uploaded in the destination container along with logging the status of the
Blob classification. If the UploadBlobToContainer was unable to upload the file, then it
will return false as a response, and you will only log the information about the Blob not
being classified and upload it to the destination container and not delete this particular
Blob item. Refer to Listing 17-7 for the entire code of the DocumentClassifier function.

Listing 17-7. Document Classifier Function

using System;

using System.IO;

using Azure;

using Azure.AI.TextAnalytics;

using Azure.Storage.Blobs;

using Azure.Storage.Blobs.Models;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Microsoft.Extensions.Logging;

namespace LanguageBasedDocumentClassifier

{

public static class DocumentClassifier

{
private static readonly AzureKeyCredential credentials = new
AzureKeyCredential (Environment.GetEnvironmentVariable("key"));
private static readonly Uri endpoint = new Uri(Environment.GetEnvir
onmentVariable("endpoint"));
private static TextAnalyticsClient client = new
TextAnalyticsClient(endpoint, credentials);
private static BlobContainerClient sourceClient = new
BlobContainerClient (Environment.GetEnvironmentVariable("connectionS
tring"),"source");
private static BlobContainerClient destinationClient = new
BlobContainerClient(Environment.GetEnvironmentVariable("connectionS
tring"), "destination");
[FunctionName("DocumentClassifier")]

443

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

444

public static void Run([TimerTrigger("o 0 10 * * *")]TimerInfo
myTimer, ILogger log)

foreach (BlobItem blobItem in sourceClient.GetBlobs()) {

BlobClient blob = sourceClient.GetBlobClient(blobItem.
Name);

StreamReader data = new StreamReader(blob.Download().Value.
Content);

string detectedlLanguage = Getlanguage(data.ReadToEnd());
bool IsUploaded = UploadBlobToContainer(destinationClie

nt, $"{detectedLanguage}/{blobItem.Name}", blob.Download().
Value.Content);

if (IsUploaded)

{
sourceClient.DeleteBlobIfExists(blobItem.Name);
log.LogInformation($"{blobItem.Name} is classified");
}
else
{
log.LogInformation($"Failed to classify {blobItem.
Name}");
}

public static string Getlanguage(string content)
return client.DetectlLanguage(content).Value.Name;
public static bool UploadBlobToContainer(BlobContainerClient

containerClient,string blobName,Stream blobData) {
bool flag = true;

containerClient.UploadBlob(blobName,blobData);

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

catch (Exception ex) {
flag = false;
}

return flag;

Test the Language-Based Document Classifier
Function

To test the document classifier function, you have to run the function, but before doing
that, let’s look at the files present in the source and destination container. As shown in
Figure 17-19, the source container contains four text files. All the text files are written in

different languages.
D ?OU rce
Container
| l;ea':h {Ctri+7) « T Upload [5 Change access level (') Refrazh
O Overview Authentication method: Access key (Switch to Azure AD User Account)

Location: source
P Diagnose and sclve problems

B Acosss Control (M) | Search blobs by prefix (case-sensitive) | (@
Settings Name Modified Access tier Blob type Size
@ Shared access signature [& sample-1.4at 4/22/2021, T:52:34 PM Hot (infierred) Block blob 778
Access palicy [_l [sample-2.tct 4/22f2021, T:52:34 PM Hot (Inferred) Elock blob 60B
1l Properties O & sample-3.0a 4/22/2021, T:52:34 M Hot (inferred) Block blob 808
0 metadata D L ‘ sample-4.tet 42272021, 7:52:34 PM Hot (Inferred) Block blob 208

Figure 17-19. Files present in source container

Now let’s take a look at the files present in the destination container, as shown in
Figure 17-20. As of now, the destination container is empty and has no files uploaded
into it. Once you run your DocumentClassifier function, it will populate this container.

445

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

== destination

|
Container
| Eearch (Ctrl+n | « T Upload 8 Change access level) Refresh
1 overview Authentication method: Access key (Switch to Azure AD User Account)

Location: destination
f Diagnose and solve problems

Search blobs by prefix (case-sensitive)

A Accass Control (IAM)

Settings Mame Modified Access tier Blob type
@ Shared access signature No results
Accass palicy
1! Properties
O metadata

Figure 17-20. Files present in the destination container

Asyou have seen all the files present in both of the containers, let’s run your
DocumentClassifier function and check the containers again. See Figure 17-21.

B C:\Users\ashirwad\AppData\Local\AzureFunctionsTools\Releases) 3.24 O\ cli_xf4\func.exe - m]

Size

hzure Functions Core Tools
Core Tools Version: 3.
Function Runti 3

2 Commit hash: Gbfab24b2743f8421475d996402c398d2feda%e (64-bit)

[2021-€4-22T717:55:23.4952]

Functions:

DocumentClassifier: timerTrigger

Figure 17-21. Logs of the DocumentClassifier function

The DocumentClassifier function was able to classify the documents by the
language in which they were written and upload them to the destination container
successfully, as shown in the logs of your Azure Functions Core Tools.

Let’s go to the destination container again to verify this. Now the destination

container contains four folders, namely, English, Hindi, Oriya, and Afrikaans, as can be

shown in Figure 17-22. All these folders contain the files that were written in the same

language as that their folder name.

446

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

destination

Container
|/’—3 Search (Ctrl+/) « T Upload &8 Change access level () mefrash 2 Change tier
B Overview Authentication method: Access key (Switch to Azure AD User Account)

Lecation: destination
Z? Diagnose and solve problems

| Search blobs by prefix (case-sensitive)
Ao Access Control (1AM)

Settings Name Modified Access tier
@ Shared access signature (J 1 Afrikaans
Access policy (J s engiish
Il properties E] B Hindi
@ mMetadata O ma oriya

Figure 17-22. Destination container after function execution

The function had one more functionality: to remove the files that were already
classified and uploaded to the destination container. Since your DocumentClassifier
function was able to classify and upload all the files successfully, your source container
should be empty now. You can verify that by going back to the source container, as
shown in Figure 17-23.

P source
| :
Container
|»’> bearch (Ctrl+/) I « T Upload [3 Change access level O Refresh
7 Overview Authentication method: Access kay (Switch to Azure AD User Account)

Location: source
s Diagnose and solve problems

[Search blobs by prefix (case-sensitive)

fa Access Control (IAM)
Settings Name Modified Access tier

@ Shared access signature No results

Access policy
il pro perties

@ Metadata

Figure 17-23. The source container after function execution

447

CHAPTER 17 ADDING COGNITIVE CAPABILITIES TO YOUR AZURE FUNCTIONS

Summary

In this chapter, you learned about ways to create intelligent serverless solutions with the
help of Azure Functions and Azure Cognitive Services by building a feedback analyzer
app and a document classifier app. While building both serverless solutions, you learned
how to integrate the cognitive capabilities into your solution by leveraging the power of
Azure Text Analytics.

The following are the key takeaways from this chapter.

e Azure Cognitive Services provides REST endpoints and client-side
libraries to add cognitive capabilities in your applications.

e You can access the Azure Text Analytics service in the Azure portal.

¢ You can perform tasks such as language detection, sentiment
analysis, and named entity recognition tasks using Azure Text
Analytics.

e You can integrate cognitive capabilities into an Azure function by
using the SDKs of Azure Cognitive Services.

448

CHAPTER 18

Introduction to Azure
Durable Functions

You may have a scenario where the application logic is broken into smaller chunks, and
each chunk of code is hosted in an Azure function. The application consists of a couple
of Azure functions that interact with each other and exchange data and state for business
processing. You may have to execute the functions in a specific order like a workflow.
You need to orchestrate these Azure functions and make sure that the functions
maintain their data and state. Azure functions are by default stateless. They will not be
able to handle such scenarios. You need to use the service Azure Durable Functions,
which will help you to make these functions stateful and build a workflow.

You learned how to create intelligent serverless applications using Azure Cognitive
Services and Azure Functions in the previous chapter. In this chapter, you will learn how
to build and orchestrate stateful workflows using Azure Durable Functions.

Structure of the Chapter

In this chapter, you will explore the following aspects of Azure Durable Functions:
e Getting started with Azure Durable Functions
o Benefits of Azure Durable Functions
e Application patterns

o Implementing functions with Azure Durable Functions

449
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_18

https://doi.org/10.1007/978-1-4842-7122-3_18#DOI

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Objectives

After studying this chapter, you will be able to do the following:
e Use Azure Durable Functions and its patterns

e Build a durable function

Getting Started with Azure Durable Functions

Say you work for an e-learning company where students will complete an online course
and you need to issue a certificate based on their course completion status and if they
have paid the course fees in full. To make this scenario work, you need to design a
workflow that will perform the following steps:

1. Checkwhether the student has completed each of the modules in

the course.

2. Check whether the student has paid the course fees. If not, trigger
a notification to the student to pay the fees.

3. Check whether the student has passed the exam for the course.

4. Issue a certificate for the student to download if the student has
completed all the modules, paid the course fees, and passed the

exam.

Sending data from one workflow step to another is crucial for workflow-based
applications. You need to make each step of the workflow stateful. You can achieve this
scenario using Azure Durable Functions. The Azure Durable Functions extension helps
you build stateful workflows using Azure functions. It makes the Azure functions stateful.
You can build durable functions using C#, F#, and Node.js.

Durable functions comprise the following components:

¢ (Client function
e Orchestrator function

e Activity function

450

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

The Activity function performs the actual business logic and acts as a step in the
workflow. The Orchestrator function invokes the Activity function and orchestrates
them as a workflow and then goes to sleep. The Activity function executes the business
functionality, and once it completes, it notifies the Orchestrator function to wake up.
The Orchestrator function wakes up, invokes the next Activity function, and then goes
to sleep again until it gets a completion status from the Activity function. The Client
function invokes the Orchestrator function. The end user or the consuming application
of the workflow invokes the Client function.

Azure Durable Functions maintains and manages its states using Table Storage
and Queue Storage. When the Orchestrator function completes execution, it pushes its
context data and state to Azure Table Storage. The Orchestrator function and the Activity
function exchange data among themselves using Azure Queue Storage. See Figure 18-1.

<

Activity Function

=< =<

Client Function Orchestrator Function Activity Function

<

Activity Function

Figure 18-1. Azure Durable Functions components

451

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Note The Azure Durable Functions service helps you build serverless workflows.
You can also build serverless workflows using Azure Logic Apps. The Azure Durable
Functions workflow is well suited for developers as you need to implement the
workflows using code. You do not need to be a coder to implement Azure Logic
Apps workflows. Azure Logic Apps come with a higher monetary cost compared to
Azure Functions. Workflows can be developed using the Logic App Designer user
interface with simple drag-and-drop and configurations.

Benefits of Azure Durable Functions

The following are the benefits of Azure Durable Functions:

¢ You can implement function chaining scenarios where you can
invoke one function after another in a sequence.

e You can implement parallel execution of functions where you can
execute multiple Azure functions in parallel.

¢ You can maintain the state of the Azure functions.
¢ You can create stateful workflows.

e Durable functions are serverless components. You get billed for the
duration when the functions are executing in the workflow. The
underlying platform manages the scaling of the functions.

o Itsupports a wide range of programming patterns, as shown here:
e Fan-out and fan-in
o Functions chaining
e Monitoring
e Human interaction
o Aggregator
e Async HTTP APIs

452

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Application Patterns

You can use Azure Durable Functions to build the following application patterns:

Fan-in and fan-out
Function chaining
Async HTTP APIs
Monitoring
Human interaction

Aggregator

Let’s discuss each of these application patterns in detail.

Fan-0Qut and Fan-In

In this pattern, a function executes the business logic and passes the data to either a set

of functions or multiple instances of a function that execute in parallel. This process

is called fan-out. These parallel functions or instances of the function further process

the data and execute the business logic. They send the processed data to another

function that aggregates the data from these parallel functions or function instances and

processes the aggregated data further. This phenomenon is called fan-in. Figure 18-2

depicts the fan-out and fan-in pattern.

453

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

<

A N

Function 1 \ Function 2 Instance Z/ Function 3

Function 2 Instance 3

Figure 18-2. Fan-out and fan-in pattern

Function Chaining

In this pattern, several functions execute one after the other. The first function processes
the data and sends the data for further processing to the second function. The second
function processes the data further and sends the data to the third function and so on.
In this pattern, we chain a set of functions, with each function in the chain performing
business logic for the scenario and passing on the data and state to the next function.
Figure 18-3 depicts the function chaining pattern.

P == <o=—=<>

Function 1

Function 2 Function 3

Figure 18-3. Function chaining pattern

454

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Async HTTP APIs

In some scenarios, you may have a long-running activity processing the business
functionality. You need to keep tracking the execution status of the long-running activity
and get the processed results once the activity completes. You can build such scenarios
using async HTTP APIs. A client application will trigger an HTTP-triggered orchestrator
client. The HTTP orchestrator client will invoke the Orchestrator function to orchestrate
the Activity functions that are executing long-running tasks. The Azure Durable
Functions workflow exposes a set of REST APIs that give the processing status and results
of the workflows. The client application can invoke these REST APIs to monitor the
completion status of the long-running tasks and get the processed results. Figure 18-4
depicts the async HTTP APIs pattern.

Client Application

L1

o == 0=

HTTP Client Function Orchestrator Function Activity Function

Figure 18-4. Async HTTP pattern

Monitoring

You may have scenarios where you need to monitor events or the execution status of an
external process or another function. You can use long-running durable functions to
continuously check the events or execution status of the external process and perform
an activity when a specified condition is met. For example, you may have an Azure
function that gets triggered whenever an item gets inserted in the Queue Storage. You
need to generate a notification whenever the Azure function goes down or generates an
exception. You can have a long-running durable function executing continuously and

455

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

monitoring the exceptions generated by the Azure function or monitoring the health of
the Azure function. Whenever the Azure function generates an exception or goes down,
the durable function will send a notification.

Human Interaction

You may have a maker-checker scenario where a maker creates a request, and the
request gets forwarded to the checker for verification and approval. For example, a
loan approval system can be developed using the Azure Durable Functions workflow.
A customer invokes the Orchestrator client function of the Azure Durable Functions
workflow. The Orchestrator client function invokes the Orchestrator function and starts
the loan approval process. The Orchestrator function calls a special type of Activity
function called a Durable Timer function and sends an email to the approver for loan
approval. The Durable Timer function waits for a specified amount of time and notifies
whenever the approver approves or rejects the loan using a user interface application.
The user interface application notifies the Durable Timer function with the approval
status. The Durable Timer function completes once it gets a notification and passes on
the status to the Orchestrator function for further processing. The durable function waits
for a specified time interval and returns the control to the Orchestrator function if the
approver does not take any action within that time interval.

Aggregator

In this pattern, the durable function aggregates event data from multiple sources,
processes the aggregated data, and makes it available for client applications to query and
use the data. You need to use durable entities to address such scenarios.

Implement an Azure Durable Function

Let’s implement a simple Azure Durable Functions workflow using Visual Studio. The
Azure Durable Functions workflow will contain an Orchestrator Client function, an
Orchestrator function, and an Activity function. Open Visual Studio and click “Create a
new project.” See Figure 18-5.

456

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

¥_ Clone or check out code

Get code from an online repository like GitHub
or Azure DevOps

(')@ Open a project or solution

Open a local Visual Studio project or .sln file

- Open a local folder

Navigate and edit code within any folder

#§ Create a new project

Choose a project template with code scaffolding
to get started

Continue without code =

Figure 18-5. Create a new project

Select Azure Functions and click Next. See Figure 18-6.

Cc# v All platforms A Cloud -

@ ASP.NET Core Web Application
s

Project templates for creating ASP.NET Core web apps and web APIs for Windows,
Linux and macOS using .NET Core or .NET Framework. Create web apps with Razor
Pages, MVC, or Single Page Apps (SPA) using Angular, React, or React + Redux.

[« Linux macOs Windows Cloud Service Web

@ Blazor App

Project templates for creating Blazor apps that that run on the server in an ASP.NET
Core app or in the browser on WebAssembly. These templates can be used to build
web apps with rich dynamic user interfaces (Uls).

(= Linux macOs Windows Cloud Web

< > Azure Functions

A template to create an Azure Function project.

c# Azure Cloud

gRPC Service
A project template for creating a gRPC ASP.NET Core service using .MET Core.

gRPC

(= Linux macOs Windaows Cloud Service Web

=p=m Worker Service

Back Next

Figure 18-6. Select the Azure Functions project type

457

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Provide the details of the functions app project and click Create. See Figure 18-7.

Configure your new project

Azure Functions ¢ Awre Cloud

Project name

DurableFuncDemo

Location

CA\Users\Abhishek Mishra\source\repos -

Solution name @

DurableFuncDemo

__| Place solution and project in the same directory

Figure 18-7. Provide the project details

Select Empty for the function template. You will add a durable function to the
function app project later. Click Create. See Figure 18-8.

458

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Create a new Azure Functions Application
Azure Functions v3 (NET Care)

Empty © Storage Account (AzuréWeblobsStorage)
L

Creates an Azure Function project with no triggers. Function triggers can be added during
development.

Storage Emulator -

& Some capabilities may require an Azure storage account

Blob trigger

A Ci function that will be run whenever a blob is added to a spedified container

Cosmos DB Trigger
A C# function that will be run whenever documents change in a document collection

E Event Grid trigger

A CiHi function that will be run whenever an event grid receives a new event
Event Hub trigger
A C# function that will be run whenever an event hub receives a new event

E Http trigger

Get started with Azure Functions

Back I Create I

Figure 18-8. Select Empty

Right-click the function app project and click Add. Then click New Azure Function.
See Figure 18-9.

459

CHAPTER 18

W Df tl‘

v

<

g

INTRODUCTION TO AZURE DURABLE FUNCTIONS

Solution Explorer

Search Solution Explorer (Ctrl+;)

‘
P & Dependencies
O gitignore
& host json

&7 local.settings.json

CO@B- oS 8P| K-

m Solution 'DurableFuncDemo’ (1 of 1 project)

£ Build
Rebuild
Clean
Analyze and Code Cleanup
Pack
@ Publish...

Scope to This
B New Solution Explorer View

@ Edit Project File

INew Azure Function... I

New Item... Ctrl+Shift+A

Existing Item... Shift+Alt+A

New Folder
Docker Support...
REST API Client...
Reference...

Service Reference...

Connected Service

Class... Shift+Alt+C

| Lagd

ff Manage NuGet Packages...
Manage User Secrets

$i} Set as StartUp Project

'}(, Cut

X Remove

o}

Rename

Unload Project

Load Project Dependencies
¢ Open Folder in File Explorer

A Properties

Ctri+X
Del

Alt+Enter

Figure 18-9. Add a new function

Select Azure Function, add a name, and click Add. See Figure 18-10.

460

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Add New Item - DurableFuncDemo
4 |nstalled

4 Visual C# Items
Code
Data
General
P Web
SOL Server

Storm Items

P Online

Default >| &5 |E=

Class

Visual C# Items

Azure Function

Visual C# Items

i
§]

Class for U-SQL

Interface

Component Class
Application Configuration File
Application Manifest File (Windows Only)
Bitmap File

Code Analysis Rule Set

Code File

Cursor File

DataSet

Debugger Visualizer

editarconfig File (NET)

Visual C# Items

Visual C# Itemns

Visual Cff Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual CP Items

Visual CIf Items

Visual CF Items

Visual C# Items

Visual C# Items

Name: I DurableFundcs

-~

Search (Ctrl+E)

Type: Visual CH ltems

Add an Azure Function to tH

Figure 18-10. Provide a function name

Select Durable Functions Orchestration and click OK. See Figure 18-11.

461

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

= Queue trigger
D Bleb trigger
Event Grid trigger
Event Hub trigger
@ loT Hub trigger

@ Service Bus Topic trigger

& Durable Functions Orchestration

m Cosmos DB Trigger
SendGrid

SignalR

RabbitMQ trigger
Kafka trigger

Kafka output

OK

Figure 18-11. Durable Functions Orchestration template

The durable function gets created using some boilerplate code. Let’s explore the
code generated. The following functions were added:

o Orchestrator function named DurableFunc
e Activity function named DurableFunc_Hello
e Orchestrator Client function called DurableFunc_HttpStart

DurableFunc_HTTPStart is an HTTP-triggered function. You can invoke it to start
the Azure Durable Functions workflow. It uses the StartNewAsync method to invoke the
DurableFunc function, which is an Orchestrator function. The durable function invokes
the Activity function called DurableFunc_Hello three times and passes the Tokyo, Seattle,
and London parameter values. It uses the CallActivityAsync method to invoke the
Activity function. The Activity function called DurableFunc_Hello prepends the word Hello
with the parameter name and returns it to the Orchestrator function DurableFunc. The
Orchestrator function DurableFunc aggregates the Activity function output and returns
the output to the Client Orchestrator function called DurableFunc_HTTPStart. The Client
Orchestrator function returns the output from the Orchestrator function to the caller using
the CreateCheckStatusResponse method that builds the response output for the workflow.

462

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Listing 18-1 shows the code for the durable function workflow that was generated.

Listing 18-1. Durable Function Code

using System.Collections.Generic;

using System.Net.Http;

using System.Threading.Tasks;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.DurableTask;
using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.logging;

namespace DurableFuncDemo

{

public static class DurableFunc
{
[FunctionName("DurableFunc")]
public static async Task<List<string>> RunOrchestrator(
[OrchestrationTrigger] IDurableOrchestrationContext context)

var outputs = new List<string>();

// Replace "hello" with the name of your Durable Activity
Function.

outputs.Add(await

context.CallActivityAsync<string>("DurableFunc_Hello",

"Tokyo"));

outputs.Add(await

context.CallActivityAsync<string>("DurableFunc_Hello",

"Seattle"));

outputs.Add(await

context.CallActivityAsync<string>("DurableFunc_Hello",

"London"));

// returns ["Hello Tokyo!", "Hello Seattle!", "Hello London!"]
return outputs;

463

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

[FunctionName("DurableFunc_Hello")]
public static string SayHello([ActivityTrigger] string name, ILogger
log)

{
log.LogInformation($"Saying hello to {name}.");

return $"Hello {name}!";

}

[FunctionName("DurableFunc_HttpStart")]

public static async Task<HttpResponseMessage> HttpStart(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")]
HttpRequestMessage req,
[DurableClient] IDurableOrchestrationClient starter,
ILogger log)

// Function input comes from the request content.
string instanceld = await starter.StartNewAsync("DurableFunc",
null);

log.LogInformation($"Started orchestration with ID =
"{instanceld}'.");

return starter.CreateCheckStatusResponse(req, instanceld);

Now let’s execute the Azure Durable Functions workflow. The output will give
you the URL for the Client Orchestrator function that you can use to invoke the Azure

Durable Functions workflow. See Figure 18-12.

464

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

; B C:\Users\Abhishek Mishra\AppData\Local\AzureFunctionsTools\Releases\3.24. 2\cli_x64\func.exe

Wzure Functions Core Tools
Function Runtime Version: 3.0.15417.6

[2821-05-089T15:36:54,1657]

Functions:
DurableFunc_HttpStart:
DurableFunc: orchestrationTrigger

DurableFunc_Hello: activityTrigger

[2021-05-89T15:37:11.599Z] < ock lease acquir

“ore Tools Version: 3.9.3442 Commit hash: 6bfab24b2743f8421475d996402c398d2fed4a%e0@
2

(6

Figure 18-12. Azure Durable Functions workflow output

Copy the URL for DurableFunc_HttpStart from the function output and send a GET
request to the URL using the Postman tool. Postman will return the supported URLs that

you can use to interact with the workflow.

Copy the statusQueryGetUri URL and send a GET request to it using the Postman

tool. In this chapter, you are using Postman to invoke the function URL. You can also

choose to use the Swagger Ul or SoapUI or any other API/REST development tool. You

will get the same response as in Figure 18-13.

465

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

GET = http:/flocalhost:7071/api/DurableFunc_HttpStart end
Farams Authorization Headers (7) Body Pre-request Script Tests Settings
Body Cookies Headers (6) Test Results @ 202Accepted 742ms 1.3KB Sa

Fretty Raw Preview Visualize J50N = 5

1o

2 "id": "edbddSblB6a3d314932832a231fhafed”

3 "statusQueryGetUri”: “hitp://localhost:7@71/runtime/webhooks/durabletask/instances/
edbadiblesaia314932832a231fbafed *taskHub=Tes tHubNamekconnection=5Storaged
code=akRAATUrENLKG qal DdpBNFEShve1]59BYF Lakhm3sftgaa==",

4 “sendEventPostUrl™: ‘thp:.-'.-’lucalhusr_:?%?1.'r-unt,‘ne.-f-.uehhaaks,-’dur‘abletdsk.-"lnslanLesl

edhadiblB6a14314932832a2 31 Ffhafed/raisebvent/ {eventName } ?taskHub=TestHubName&connection=5torage&
code=akREATVr ENtKgbiwYqaMFS@oDdpaNFEShve1159BYF lLAKhm3SfLgaA=="

5 “terminatePostUri™: “http://localhost:7e7l/runtime/webhooks/durabletask/instances/
edbdd8bl86a34314932832a231Fbafed/terminate ?reason={ text }ataskHub=TestHubName&connection=5toragesk
code=akREATVrENtKgbkwYqaMFSeoDdpeNTEShvel]SOBYF 1Akhm3sfigaa==",

6 “purgeHistoryDeleteUri®: “http://localhost:7@71/runtime/webhooks/durabletask/instances/
edbddibl86234314832832a231fbated taskHub=TestHubNamelkconnection=5toraged

code=akRAATVrENt KgbnygaMFS@9DdpaNTEShvel]S9BYF1AKhMES fLgBA==

Figure 18-13. Invoke orchestrator client URL in Postman

You can see the output for the Azure Durable Functions workflow. See Figure 18-14.

GET L 4 I http://localhost: 707 1/runtime/weabhooks/durabletask/instances/edb4d9b106a34314932832 I
Params @ Authorization Headers (7) Body Pre-request Script Tests Settings
Body Cookies Headers (4) TestResults @ 2000k 1455ms 409B Sav
Pretty Raw Preview Visualize JSON = 5
1 {
2 “name”: "DurableFunc”,
3 "instanceId": "edb4d9ble6a34314932832a231fbafed”,
4 "runtimestatus”: "Completed",
5 "input”: null,
6 “customstatus”: null
7 “output”: [
g "Hello Tokyo!",
] "Hello Seattle!",
1@ "Hello London!”
1],
12 "createdTime": "2021-85-89T15:39:48Z",
13 "lastUpdatedTime": "2021-85-89T15:39:49Z"
14 [}

Figure 18-14. Azure Durable Functions workflow response

466

CHAPTER 18 INTRODUCTION TO AZURE DURABLE FUNCTIONS

Summary

In this chapter, you learned about Azure Durable Functions. You explored the benefits

of using durable functions and different programming patterns supported by them. You

learned the different components of an Azure Durable Functions workflow and how it

works internally. You then implemented an Azure Durable Functions workflow using
Visual Studio.
The following are the key takeaways from this chapter:

Azure Durable Functions is a serverless offering, and you get charged
only when the workflow runs.

Durable functions make Azure functions stateful.
You can build stateful workflows using durable functions.

An Azure durable function consists of a Client Orchestrator function,
an Orchestrator function, and an Activity function.

The Orchestrator function saves its state using Azure Table Storage
and exchanges data with the Activity functions using Azure Queue
Storage.

Durable functions support a wide range of programming patterns.
e Fan-outand fan-in

o Function chaining

e Monitoring

¢ Human interaction

In the next chapter, you will explore how to create Azure functions with an Azure

Logic Apps workflow.

467

CHAPTER 19

Integrating Azure
Functions in a Logic
Apps Workflow

In the previous chapter, we discussed building solutions using the bindings and
triggers available for Azure Functions. There are quite a handful triggers and bindings
available for Azure Functions, but sometimes they are not enough to build solutions
to solve real-world problems. As you saw previously, you do not have any binding to
perform operations with your Azure SQL Database instance; thus, you had to use the
Data.SqlClient NuGet package. Similarly, you don’t have any triggers to run when a
tweet is sent or when a file is uploaded in Dropbox or when the temperature of a place
changes. Does that mean you cannot perform such tasks using Azure Functions? The
answer is no.

You can take multiple approaches to achieve tasks that do not have available triggers
already. One approach is to create a timer-triggered function that will run every second
or minute, call the REST APISs of the desired product or service, and execute the required
logic whenever the business requirement is satisfied. The other approach is to create an
HTTP-triggered function and configure its URL as a webhook URL. A classic example
of this use case is that of GitHub WebHooks where you can configure the webhook URL
as your function URL and select the events for which this webhook will send an HTTP
POST request to configure the webhook URL along with the payload.

Well, these are definitely two ways to solve your issue, but are there any other ways
in which you can achieve these types of tasks? Is there any other service offered by Azure
to build serverless solutions to perform such operations? The answer is yes. You can
use Azure Logic Apps to build serverless solutions to perform actions and solve your

469
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_19

https://doi.org/10.1007/978-1-4842-7122-3_19#DOI

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

business requirements. Azure Logic Apps is a low-code serverless offering by Azure that
contains 200+ connectors to interact and work with different products and services. The
focus of this chapter will be to learn how to build serverless solutions using Azure Logic
Apps and Azure Functions.

Structure of the Chapter

This chapter will explore the following aspects of Azure Logic Apps:
o Getting started with Azure Logic Apps solutions
o Creating an Azure Logic Apps solution using the Azure portal

e Integrating an Azure function with an Azure Logic Apps solution

Objective

After studying this chapter, you will be able to do the following:
o Create an Azure Logic Apps solution using the Azure portal

o Interact with Azure functions inside a Logic Apps workflow

Getting Started with Azure Logic Apps

Azure Logic Apps is a low-code serverless offering of Microsoft Azure that enables you to
build enterprise-grade workflows. A workflow can be a business process. Logic Apps is an
integration platform as a service (IPaaS) offering that helps you integrate apps, services,
and systems irrespective of their hosting environment. You can build logic apps using the
Azure portal or with IDEs like Visual Studio or VS Code. The Azure Logic Apps service
contains more than 200+ connectors from different vendors and service providers that
you can use to build a workflow to solve your problems without writing any code.

Connectors act as the interface for accessing data, actions, and other events from
different services, apps, or platforms. A connector is a wrapper around the REST APIs
exposed by various service providers. If you don’t have a connector for a product or
service, you can create a custom connector provided you have the OpenAPI definition of
it. Connectors can also have actions and triggers.

470

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Actions are operations of a particular service directed by the user to be performed in
the workflow. For example, you can use an action to get a list of all the files presentin a
folder of your Google Drive or to delete a file from your Blob storage container. Triggers
in Logic Apps solutions are similar to the triggers in Azure functions. They notify your
apps when an event occurs. For example, a recurrence trigger will notify your app to run
at a uniform interval defined in the recurrence trigger.

The following are the advantages of Azure Logic Apps:

o Highly extensible

o Pay-per-execution billing model
o Enterprise-grade integration

e Supports versioning

e 200+ connectors

o Reusable

e Tooling support in Visual Studio and VS Code

Create an Azure Logic Apps Solution in the Azure
Portal

In this section, you will create a Logic Apps solution that will act as an API, take a name
from the request body, and return a response concatenating the name with Hi.

Go to the Azure portal. Type Logic app in the search box and click the result.
See Figure 19-1.

Microsot Azure

Services See a
Azure s

[%) Logic apps

+ :. Logic Apps Custom Connector

Figure 19-1. Click “Logic apps”

471

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Let’s click Add and then Consumption to create the Logic Apps solution. If you have
any existing logic apps, you can find them on this screen. See Figure 19-2.

Home >

Logic apps =

Default Directory

@ Manage view v () Refresh

-+ Consumption T
Subscription == Azure |

-+ Preview
Showing 0to 0 ot 0 records.

Name T

Figure 19-2. Click Add and then Consumption

You will be prompted to enter the subscription name, resource group name, and
logic app name; then select the nearest region. Click “Review + create.” See Figure 19-3.

Create a logic app

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * I_ v l
Resource group * I (Mew) rg-chapter-19 AV I
Create new

Instance details

Logic app name * | lz-apitpg] M |
Region * ICentraI India ~ I
Associate with integration service D

environment (O

< Previous : Basics Next : Tags > | Download a template for automation @

Figure 19-3. Click “Review + create”

472

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

You will see a summary of the configuration that you entered in the previous screen.
Click Create to provision the Logic Apps solution. A validation check will be done in the
background before the resource provisioning begins. See Figure 19-4.

Create a logic app

Basics Tags Review + create

Basics
Subscription Azure Pass - Sponsorship
Resource group rg-chapter-18
Logic app name la-apiApp
Location Central India
Tags
< Previous : Tags Next : Review + create > Download a template for automation ©

Figure 19-4. Click Create

You can see the provisioning status on this screen. Once the deployment is complete,
Click “Go to resource.” See Figure 19-5.
[i] Delete () Cancel |T) Redeploy () Refresh

€@ we'd love your feedback! —

@ Your deployment is complete

(&l Deployment name: Microsoft.EmptyWorkflow
2 Subscription: Azure Pass - Sponsorship (45abecfd-0e97-4b63-b8e9...
Resource group: rg-chapter-19

~ Deployment details (Download)

~ Next steps
Figure 19-5. Click “Go to resource”

473

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

On the logic app’s screen, click “Logic app designer,” which is present in the
Development Tools section in the side menu. Here you will find multiple templates to
get started. Click the “When a HTTP request is received” template as you want to build
an API in this section. See Figure 19-6.

o la-apiApp | Logic app designer

Logic app

[2 search (ctri+n | «
1A Overview
ity |) Lo -
W Adtiviy log When a message is received in When a HTTP request is
. ™ i
Ao Access control (IAM) a Service Bus queue @A_. received
@ Tags
&* Diagnoss and solvs problems When a new tweet is posted p— When an Event Grid resource
& event occurs
R

Development Tools

I <% Logic app designer I

> Logic app code view

B Versions

Recurrence When a new email is received in
Outlook.com

When a new file is created on When a file is added to FTP

OneDrive 1@ server

Figure 19-6. Click “Logic app designer”

@ APl connections

&3 Quick start guides

plele]m

Settings

This will create a Logic Apps workflow with a trigger of type “When a HTTP request
is received.” It will be accepting POST requests. Once you save the workflow, you will
get the URL to send requests to your Logic Apps solution. Click “Use sample payload to
generate schema” to define the request body JSON schema. See Figure 19-7.

474

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

When a HTTP request is received

HTTP POST URL

| URL will be generated after save | iy

Request Body JSON Schema
O

Use sample payload to generate schema

Add new parameter

+ New step

Figure 19-7. Click “Use sample payload to generate schema”

As you want to send a name in your request payload, let’s enter { “name”:”” } as the
sample JSON payload, as shown in Figure 19-8, and click Done. See Figure 19-8.

Enter or paste a sample JSON payload. X

{ " ", o

1

Figure 19-8. Click Done

475

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

The response body JSON schema will be generated based on the sample JSON
payload that you entered on the screen shown in Figure 19-8. This helps Logic Apps to
understand the request payload data and store the JSON values as dynamic content to
use as variables in other actions of the workflow. Click + New to add an action to return a
response to the user. See Figure 19-9.

When a HTTP request is received ®

HTTP POST URL

URL will be generated after save ‘ D

Request Body JSON Schema

1 i |

"type": "object",
"properties”: {
"name": {
“"type": "string"

}

18 18
Use sample payload to generate schema

Add new parameter I

I + New step I

Figure 19-9. Click “+ New step”

You will see multiple connectors along with the related actions and triggers. Enter
response in the search box and then click the Response Request option present in the
Actions section. See Figure 19-10.

476

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

When a HTTP request is received

E Choose an operation X

O response| x I
ForYou All Built-in Standard Enterprise Custom
o33 T % 9 Q e
. v
Office 365 RosettaNet AtBot Logic Azure Azure Blackbaud boomapp
QOutlook Resource... Sentinel Raisers Edg... connect

Triggers Actions

e Response =
Sl Request ®

Figure 19-10. Click Reponse Request

This will add a response action to your workflow. Enter 200 as the status code. In the
textbox for the body, enter Hello followed with a space, and then search for name in the
Dynamic content menu and click it. This will send a “Hello {name}” response to the user,
where the name is the value passed in the request payload by the user. After entering all
the required fields, click Save. See Figure 19-11.

477

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

> piscard [Run 5 Designer ¢/* Codeview [B] Parameters W Templates B connectors 7 Help (D info
v
Response @ -

* Status Code
=

D I

Headers
| Enter key Enter value bl
Body
I Hello ﬁ name x |

Add dynamic content from the apps and connectors
Add new parameter used in this flow.

Dynamic content Expression

+ MNew step

Iz’ name I

When a HTTP request is received

. name

Figure 19-11. Click Save

With this you have created an API using Logic Apps. To test it, let’s click “When a

HTTP request is received.” Copy the value present for the HTTP POST URL here. See
Figure 19-12.

478

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

When a HTTP request is received ®

HTTP POST URL
I https://prod-22.centralindia.ogic.azure.com:443 Avorkfiows/dbee3 11299474 16395058561 Tdeec3e... I[b

Request Body JSON Schema
{ I
“type”: “object”,
“properties™: {
“name”: {
“type": "string”

}

Use sample payioad to generate schema

Add new parameter

—

Figure 19-12. Copythe HTTP POST URL

To test the logic app, open Postman and create a request. Since your logic app will
accept only POST requests, select POST as the request type and then paste the URL
you earlier copied from your Logic Apps solution. In the request body, send a name
along with its value in JSON format and click Send. As shown in the response body in
Figure 19-13, you get the desired response from your Logic Apps solution.

479

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Logic App | Logic App [£) Save ~
POST ~ https:/fprod-22.centralindia.logic.azure.com:44 3/workflows/dbcc311299df416395d885e17dccc 3e3
Params ® Authorization Headers (8) Body ® Pre-request Script Tests Settings Cookies
none form-data x-www-form-urlencoded binary GraphQL | JSON ~ Beautify
2 ! "name"” : "ashirwad" [
sp §

Body Cookies Headers (24) TestResults ({‘é 200 OK 1341ms 117KE Save Response

Pretty Raw Preview Visualize Text = mQ

1] Hello ashirwad

Figure 19-13. Click Send

Add Azure Functions in Logic Apps Workflows

In this section, you will create a Logic Apps solution to get the filename and file content
from the request payload. Your logic app will create a file and store it in your Google
Drive after encrypting the file content with the help of an Azure function. You will be
using the Caesar cipher as your encryption algorithm. At the end of this section, you will
be able to work with the Google Drive connectors along with exploring ways to integrate
an Azure function in your Logic Apps workflow.

Note The Caesar cipher is an encryption algorithm that works by shifting each

letter of the message by a certain number of letters based on the encryption key.
For example, with the encryption key as 1, your algorithm will replace A with B, C
with B, and so on.

Go to the Azure portal. Type in function app in the search box and click Function
App. See Figure 19-14.

480

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Microsoft Azure £ function app| I

Services See all

Azure s

<> Function App I

Figure 19-14. Click Function App

Click + Create to create a function app. See Figure 19-15.

Function App =

Default Directory

-+ Create |53 Manage view v (O Refresh

| Filter for any field... ‘ Subscription == Azure

Showing 0 to 0 of 0 records.

Figure 19-15. Click + Create

You will be prompted to enter the subscription name, resource group name, function
app name, publish method, runtime stack, and version, and to select the nearest region.
Click “Review + create.” See Figure 19-16.

481

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Create Function App

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subscription * @ I v I

" Resource Group * ! rg-chapter-19 ~ I

reate new

Instance Details

Function App name * I EncryptFunc v I
.azurewebsites.net

Publish * @ Code O Docker Container

Runtime stack * I ner |

Version * | EX v

Region * I Central India ~ l

< Previous | Next : Hosting >

Figure 19-16. Click “Review + create”

You will see a summary of the configuration that you entered in the previous screen.
Click Create to provision the function app. A validation check will be done in the
background before the resource provisioning begins. See Figure 19-17.

482

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Create Function App

Basics Hosting Monitoring Tags Review + create

Summary
4., Function App
77 by Microsoft
Details
Subscription 45abecfd-0e97-4b63-b8eS-2e62633e01be
Resource Group rg-chapter-19
Name EncryptFunc
Runtime stack NET 3.1
Hosting
Storage (New)
Storage account storageaccountrgchadde

Next > Download a template for automation

Figure 19-17. Click Create

You can see the provisioning status on this screen. Once the deployment is complete,
click “Go to resource.” See Figure 19-18.

@ Your deployment is complete

Deployment name: Microsoft. Web-FunctionApp-Portal-5ccddacd-a...
Subscription: |

Resource group: rg-chapter-19

v Deployment details (Download)
~ Next steps

Add a function. Recommended

Manage deployments for your app. Recommended

Go to resource

Figure 19-18. Click “Go to resource”

483

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Now click Functions and then click + Add to create a function in your function app.
Set the “Development environment” option to “Develop in portal” and then choose
“HTTP trigger” as the template type. Then click Add. See Figure 19-19.

(] EncryptFunc | Functions

Function App

Development environment I & Develop in portal v I

2 Search (Ctrl+/) | @ + A

@ Qverview
8 Activityl oy Selectatemplate
wity log .
Use a template to create a function. Triggers describe the type of events that invoke

Access control (JAM -
g (1AM) your functions. Learn more

L4 Tags
. No re 7 Fil
& Diagnose and solve problems iiter
9 Security
N Template Description
Events (preview)
HTTP trigger A function that will be run whenever it receives an HTTP

request, responding based on data in the body or query

Functions :
string

T q
I':f‘f Functions I Timer trigger A function that will be run on a specified schedule

App keys

Figure 19-19. Click Add

This will create an Azure function named HttpTrigger1, which will contain
boilerplate code to return a message along with the name passed in the query string or
request body payload. You can click Code + Test to view the code of the function. Let’s
rewrite this function to accept a message from the request body and encrypt it using
the Caesar cipher. Listing 19-1 shows the modified function code. You define two static
methods, Encrypt and CharEncrypt, here. The Encrypt method accepts the message
along with a key. It then iterates through all the characters of the message and calls the
CharEncrypt method. The CharEncrypt method shifts the value of the character to the
next ASCII value when the character is between a-z or A-Z and returns the char value
to the Encrypt method that will concatenate this string to a new string named output.
After the iteration through all the characters of the message is complete, it will return the
encrypted message to the user in the response body.

484

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Listing 19-1. Modified Code of the HttpTriggerl Function
#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{
log.LogInformation("C# HTTP trigger function processed a request.");

string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject(requestBody);
string message = data.MessageContent;

string responseMessage = Encrypt(message,1);

return new OkObjectResult(responseMessage);

}
static char CharEncrypter(char ch, int key)
{
if (!char.IsLetter(ch))
{
return ch;
}
char d = char.IsUpper(ch) ? 'A" : 'a’';
return (char) ((((ch + key) - d) % 26) + d);
}
static string Encrypt(string input, int key)
{
string output = string.Empty;
foreach (char ch in input)
output += CharEncrypter(ch, key);
return output;
}

485

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Now that your function has been developed and is running, let’s create your logic

app.
Go to the Azure portal. Type Logic App in the search box and select “Logic apps” in
the results. See Figure 19-20.

Microsoft Azure £ Logic App|

Services See all
Azure s

[&] Logic apps

—|— :-- Logic Apps Custom Connector

Figure 19-20. Search for Logic Apps

Click + Add and then click + Consumption. See Figure 19-21.

Logic apps =

cutm.ac.in (cutm.ac.in)

|—+— Add v @ Manage view C_) Refresh

-+ Consumption |- -
e Subscription == all

-+ Preview

Figure 19-21. Click Add and then Consumption

You will be prompted to enter the subscription name, resource group name, and logic
app name, and to select the nearest region. Click “Review + create.” See Figure 19-22.

486

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Create a logic app

Create workflows leveraging hundreds of connectors and the visual designer. Learn more &

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * | — v |

Resource group * I rg-chapter-19 ~ ||
Create new

Instance details

Logic app name * IGoog]eDriveApp v I
Region * I Central India v |I
Associate with integration service G

envirnnment (7

< Previous : Basics Mext : Tags > Download a template for automation ()

Figure 19-22. Click “Review + create”

You will see a summary of the configuration that you entered on the previous screen.
Click Create to provision the Logic Apps solution. A validation check will be done in the
background before the resource provisioning begins. See Figure 19-23.

487

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Create a logic app

Basics Tags Review + create

Basics
Subscription Azure for Students
Resource group rg-chapter-19
Logic app name GoogleDriveApp
Location Central India
Tags
< Previous : Tags | Next : Review + create > Download a template for automation O

Figure 19-23. Click Create

You can see the provisioning status on this screen. Once the deployment is complete,
click “Go to resource.” See Figure 19-24.

@ Your deployment is complete
Deployment name: Microsoft.EmptyWorkflow

Subscription: Azure for Students
Resource group: rg-chapter-19

v Deployment details (Download)

~ Next steps

Go to resource

Figure 19-24. Click “Go to resource”

On the logic app’s screen, Click “Logic app designer,” which is present in the
Development Tools section of the side menu. Here you will find multiple templates to get
started. Click the “When a HTTP request is received” template because you want to build
an APl in this section. See Figure 19-25.

488

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

.2, GoogleDriveApp | Logic app designer

Logic app
|P Search (Ctr+)) | “
& Overview = . .
Start with a common trigger
& Activity log Pick from one of the most commeonly used triggers, then orchestrate any number of actions using the rich collection of

Ao, Access control (1AM)

¢ Tags When a message is When a HTTP
received in a Service @_, request is received
&2 Diagnose and solve problems Bus queue .
Development Tools
S) When an Event Grid A Recurrence
«s Logic app designer resource event @
</> Logic app code view QLS
B versions - -
When a new file is When a file is added
@ AP connections created on OneDrive l—';@ to FTP server

& Quick start guides

Settings

Figure 19-25. Click “When a HTTP request is received”

This will create a Logic Apps workflow with a trigger of type “When a HTTP request
is received.” It will be accepting POST requests. Once you save the workflow, you will
get the URL to send requests to your Logic Apps solution. Click “Use sample payload to
generate schema” to define the request body JSON schema. See Figure 19-26.

When a HTTP request is received

HTTP POST URL
| URL will be generated after save I}

Request Body JSON Schema
3

I Use sample payload to generate schema I

‘ Add new parameter

Figure 19-26. Click “Use sample payload to generate schema”
489

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

As you want to send a name in your request payload, let’s enter the sample JSON

payload as follows and as shown in Figure 19-27:

n,mnn

"FileName":"",

nm,nn

"Message":

Click Done.

Enter or paste a sample JSON payload.

{

"EileName™: e

.'I"'.t?SStﬁgE“ g

1

Figure 19-27. Click Done

The response body JSON schema will be generated based on the sample JSON

payload that you entered in Figure 19-27. This helps Logic Apps to understand the

request payload data and store the JSON values as dynamic content to use as variables in

other actions of the workflow. Click + New to add an action to call your Azure function to

encrypt the message content. See Figure 19-28.

490

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

When a HTTP request is received

HTTP POST URL

‘ URL will be generated after save

Request Body JSON Schema

{
"type": "object”,
"properties”: {
"FileName": {
"type": "string”
}J
"Message": {
"type": "string"

Use sample payload to generate schema

O — |

| Add new parameter

+ New step

Figure 19-28. Click “+ New step”

You will see multiple connectors along with the related actions and triggers. Enter

Azure Function in the search box and then click the “Choose an Azure function” option

present in the actions. See Figure 19-29.

491

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

When a HTTP request is received

E Choose an operation X

,O azure fundicnsl x

ForYou All Built-in Standard Enterprise Custom

<&

Azure
Functions

Triggers Actions

<,> Choose an Azure function
Azure Functions @

Figure 19-29. Click “Choose an Azure function”

Since there can be multiple function apps in your subscription, you will have to
select one. Click the EncryptFunc function app. See Figure 19-30.

When a HTTP request is received

I

Choose an operation X

&« lSearcr‘. connectors and actions

&

EncryptFunc

Figure 19-30. Click EncryptFunc

492

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Since a function app can contain multiple functions, you will have to select the
function. Let’s click the HttpTrigger1 function. See Figure 19-31.

When a HTTP request is received

EncryptFunc X

&« b-:r:r:“. connectors and actions

Swagger actions Actions

HttpTriggerl =
| d) Azure Functions @

Figure 19-31. Click HttpTriggerl

As your function is expecting a MessageContent from the body of the request
payload, you need to define MessageContent. Define a JSON payload with a key named
MessageContent with the value of the message sent in the request payload of your “When
a HTTP request is received” trigger. It can be found in the “Dynamic content” menu.
After defining the request body, click “+ New step.” Your function will take this message,
encrypt it, and return the encrypted message in the request body. See Figure 19-32.

493

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

When a HTTP request is received

b 4
HttpTrigger1
Request Body
{ |
“Messa eContent':" M x :
9 L essage Add dynamic content from the apps and connectors
) used in this flow.
Ac
z F
e Dynamic content Expression
£ Message
+ New step When a HTTP request is received

Message

Figure 19-32. Define the request body and click “+ New step”

Enter Google Drive in the search box and select the “Create file” action to create a

file in Google Drive. See Figure 19-33.

494

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

4

HttpTrigger1

Choose an operation bid
O Google Drivel x
For You All Built-in Standard Enterprise Custom
Google Drive

Triggers Actions

Create file
|n Google Drive | ©

Figure 19-33. Click “Create file”

Now, you will have to click “Sign in” to log in using your Gmail account. This is a
mandatory step to allow access to your Logic Apps solution to create files in your Google
Drive. See Figure 19-34.

HttpTrigger1
n Google Drive

b4

l

Sign in to create a connection to Google Drive.

Figure 19-34. Click “Sign in”

495

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

After logging in using your Gmail account and giving your logic app the appropriate
permissions, you need to define the folder path, filename, and file content. In this case,
let’s define the folder name as /LogicApp. If your drive does not have a folder named
LogicApp, then your Logic Apps solution will create it first. Then you need to enter the
filename. Here, you define the filename with a value passed in the request payload
of your trigger of type “When a HTTP request is received.” Finally, you have to define
the file content. You define the value of the file content with the value returned in the
response body of your HttpTrigger1 function. See Figure 19-35.

X piscard [fun . Designer <% Codeview (@] Parameters R Templates B Connectors 7 Help (D info

J{ @ 10 4

v

* Flle name

FilaName * I

* File content

o | .
PP Add dynamic content from the apps and connectors Hide

used in this flow.

Connected to ashinsadsatapathLaim@gmailcom. Change connection.

Dynamic content Expression

B |

HttpTrigger1

B2 oo

When a HTTP request is received

+ New step

Figure 19-35. Enter the required fields for the action

After entering all the required fields, click Save.
Now the URL to trigger your Logic Apps solution will be generated. Let’s go to the
trigger “When a HTTP request is received” and get the HTTP POST URL. See Figure 19-36.

496

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

When a HTTP request is received ®

HTTP POST UR
I https://prod-02.centralindia.logic.azure.com:443 /Avorkflows/bc76570f44744fc0b62520d566c6008... I[E

Request Body JSON Schema

{ T
"type": “object”,
“properties”: {
"FileName™: {
“type”: "string”

},
"Message”: {
“type": "string”

: i

Use sample payload to generate schema

Add new parameter

A4

Figure 19-36. Copy the HTTP POST URL

To test your logic app, open Postman and add a request. Paste the HTTP POST
URL that you copied from your logic app in the URL bar and define the request type as
POST. In the request body, send a name along with its value in JSON format and click
Send. As shown in the response body in Figure 19-37, you get the desired response from
your logic app. This will trigger the logic app and start the workflow.

POST ~ Ilhttps:a’fprcd-oz.cenualindia.logic.azure.com;443.‘war kflows/bc76570144744fc0b62520d566¢6008 “

Params @ Authorization Headers (8) Body @ Pre-request Script Tests Settings Cookies
) none form-data @ x-www-form-urlencoded binary GraphQL JJSON ~ Beautify
2 “FileName":"test.txt",
3 "Message”!"Hi there"
4
5

Body Cookies Headers (21) Test Results F% 202 Accepted| 837 ms 1.07KB Save Response ~

Figure 19-37. Click Send
497

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

The logic app will encrypt the message sent in the request payload and then store it
in a folder called LogicApp with the filename sent in the request payload.

If you go your Google Drive and check in the LogicApp folder, you will see a file
created with the filename sent in the request payload. See Figure 19-38.

My Drive > LogicApp ~
Name
B testtxt

Figure 19-38. File created by the logic app

As shown in Figure 19-39, your logic app has created the file in the Google Drive
inside a folder called LogicApp along with encrypting and storing the message sent in the
request payload using the Caesar cipher algorithm.

Figure 19-39. Encrypted message content

498

CHAPTER 19 INTEGRATING AZURE FUNCTIONS IN A LOGIC APPS WORKFLOW

Summary

In this chapter, you learned about the Logic Apps service and ways to create a serverless
workflow using Logic Apps in the Azure portal to solve different problems with the help
of different connectors, actions, and triggers. First, you created a serverless API using the
Logic Apps service app and tested it with Postman using triggers and actions. Then, you
looked into ways to integrate an Azure function into a Logic Apps workflow and used the
response returned from the function in other actions of your workflow. You also explored
ways to use the Google Drive connectors by using the “Create file” action in your
workflow to create a file with the message shared in the response of your Azure function.
Logic Apps solutions are a perfect place to start building low-code serverless workflows.
In the next chapter, you will look into some of the best practices followed by industry
leaders while building, designing, and deploying serverless workloads.

499

CHAPTER 20

Best Practices and
Pitfalls to Avoid

We have explored different concepts of the service called Azure Functions in detail.
You have learned about the available mechanisms to build an Azure function using C#
and deploy it to the Azure environment. You also explored how to create Azure DevOps
pipelines for Azure functions. You created several Azure functions based on frequently
used triggers and bindings and learned about many important aspects that will help
you build enterprise-grade solutions using functions. By now, you have all the necessary
knowledge to work with functions in production scenarios.

You learned how to integrate Azure functions with Logic Apps solutions in the
previous chapter. In this chapter, you will explore the best practices that you should
follow while designing and building functions.

Structure of the Chapter

In this chapter, you will explore the following design aspects for the Azure Functions service:
¢ Design guidelines and best practices

o Pitfalls to avoid

Objectives

After studying this chapter, you will be able to do the following:
» Design efficient serverless solutions using Azure Functions

e Understand the do’s and don’ts of designing and building functions
with Azure Functions

501
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_20

https://doi.org/10.1007/978-1-4842-7122-3_20#DOI

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

Design Guidelines and Best Practices

You must follow design guidelines and implement best practices while building
solutions for Azure Functions. Following best practices will ensure that you build
efficient, robust, fault-tolerant, highly available, and highly scalable solutions. Azure
Functions is a serverless service, and you do not have any control over the underlying
hosting infrastructure and how each function will scale. So, you must design the
solutions based on Azure Functions to run on the underlying infrastructure in an
optimized manner and scale per the business requirements. Though you do not have
any control over the underlying code, you can design your solution efficiently and utilize
the underlying infrastructure and the hosting environment optimally. You just have to
pick a design that best suits your business requirements. For example, if you need to
build a long-running task that will run on Azure Functions, it may not be a good idea
to host this long-running task on a Consumption Plan. The Consumption Plan can run
your task for 10 minutes after which the execution will get timed out. In other words, you
cannot run any code in an Azure function for more than 10 minutes on the Consumption
Plan. You also need to decide on an efficient way to manage and monitor the functions
executing your application code.

Let’s explore some of the best practices and design guidelines listed here that you
must follow to build a solution based using the Azure Functions service:

o Decide whether to use functions or not for your scenario
e Choose the best programing language

o Choose the best hosting plan

o Pick a stateful or stateless solution

o Mitigate delay startups

e Getthe right bill fitting your budget

e Handle long-running code

o Facilitate integration and communication among other Azure and

external services
o Identify and manage the bottlenecks

e Make your solution fault tolerant

502

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

o Secure the APIs developed using Azure Functions
» Facilitate efficient monitoring and debug failures

e Incorporate DevOps practices and bring in an infrastructure-as-code
(IaC) approach

e Bringin a defensive programming approach

Decide to Use Functions or Not for Your Scenario

In an ideal scenario, functions are serverless offerings. You do not have any control
over the underlying infrastructure or the hosting environment. You do not even have
any control over the scaling aspects; the underlying infrastructure scales as and when
the application needs. So, you must validate whether your code can run in a serverless
offering or not.

You may have scenarios where you need greater control over the hosting
environment or need to install some additional software to support the execution of
your code. In such scenarios, you cannot execute your code on Azure Functions. You
do not have an option to manipulate the underlying hosting environment or install any
software on the underlying infrastructure in the case of Azure Functions. You may have
two options here. You can either look for a platform-as-a-service (PaaS) offering for
the additional software that you need and consume the software from that PaaS-based
software or choose to host your application on an infrastructure-as-a-service (IaaS)
virtual machine. For example, say you have developed a .NET Core API that uses Apache
Kafka. On the on-premises server, you can install Apache Kafka and host the .NET Core
API project. If you are planning to host the API on Azure Functions, you should use
Azure Service Bus, an alternative PaaS service for Apache Kafka on Azure, and then host
the .NET Core API on Azure Functions. Alternatively, you can use virtual machine and
install both the components together on the virtual machine.

In the same .NET Core API and Apache Kafka example, the API code in the .NET
Core API project might run for a longer duration. Azure functions are best suited to run
code for a short duration. In such scenarios, you should consider hosting your code on
Azure WebApp and using the Azure Service Bus instead of Apache Kafka. Alternatively,
you can choose to use Azure virtual machines. In the case of pure serverless functions,
you use the Consumption Plan. However, you can use a Dedicated Plan that is the same
as the App Service Plan, because using the Dedicated Plan is almost the same as using
Azure WebApp.

503

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

Using a PaaS$ solution gives you greater control over the scaling aspects. You can
define your autoscale rules or even choose to scale manually. If you need greater control
over the scaling aspects, prefer hosting your code on Azure WebApp instead of Azure

Functions.

Note To sum up, if you need greater control over the hosting environment, then
host your code on virtual machines. If you can find an alternate PaaS service for
the code dependency, then go for Azure WebApp. You get greater control over the
scaling aspects in the case of Azure Web App and virtual machines.

Choose the Correct Programing Language

The choice of programming language for your application is highly crucial. You can use
various programming languages such as C#, Java, Python, TypeScript, PowerShell, and
many more to implement an Azure function. However, before choosing a programming
language, validate if that programming language can easily handle all the requirements
for the scenario. There can be a scenario where a supported programming language
covers part of the requirements, and another programming language supports the rest.
For example, the application to be hosted on the function app needs to interact with a
third-party application that does not expose REST endpoints. Instead, the third-party
application supports using a Java package to connect to the application. In this case, you
need to identify all the necessary code that interacts with this third-party application and
then break the application code into multiple chunks. The chunks using the Java package
to interact will use functions based on the Java programming language, and all the other
chunks can use C#-based functions. In such cases, think of splitting the requirements
across multiple Azure functions based on different supported programming languages.
One more challenge we face while migrating the workloads to the cloud is a
developer’s existing skills. You may find that some developers do not have the right
skills to build the code using the programming language you have chosen for an Azure
function. In such scenarios, you may choose to cross-train your developers with the
necessary skills needed for the selected programming language, or you can check
whether your function can be implemented with workarounds using the developer’s
existing skills.

504

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

Choice of Hosting Plan

Selecting the right hosting plan for the Azure function is an important design aspect.
If you plan to build a pure serverless scenario, you can choose to use the Consumption
Plan. The following are the characteristics of a Consumption Plan:

o Pay only when the Azure function executes

e Runs for a short time interval

» No control over underlying infrastructure or hosting environment
o No control over how the Azure function scales

If you have code that runs for a short time interval, you may choose to use the
Consumption Plan. The underlying infrastructure will manage all the scaling aspects for
your Azure function. If the incoming load increases, the underlying infrastructure adds
new instances for the Azure function and balances the load. When the load decreases,
the additional instances get decommissioned automatically. You cannot control how
the functions scale and the number of instances that get removed and added as part of
scaling. You pay for all the function instances that get added. However, you get billed
only for the time interval when your code runs. If you have a function that runs for a
short time interval and you do not need to control the Azure function’s scaling aspects,
you should choose the Consumption Plan.

The function does its work and goes to sleep once the execution completes. When
you need to execute the function for the next time, it is not instantaneous. It wakes up
from the sleep state once it gets triggered and starts executing. So, there is always a
delay in serving the request when the function awakes from the sleep state. This delay
in serving the request is referred to as the cold-start phenomenon. However, once the
function is active, you will not face the cold-start phenomenon as long as the function
does not go into the sleep state. To avoid this cold-start problem, you can use the
Premium Plan. The Premium Plan guarantees that at least a single instance is always
available to serve your incoming requests. You also get some level of control over the
compute requirements by choosing one of the tiers supported by the Premium Plan.

You may have a requirement where the Azure function runs for a longer duration.
For example, if you already have an App Service Plan, you can share it with an Azure
function hosting the long-running code. In such a case, you can use a Dedicated Plan or

505

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

an App Service Plan. However, Dedicated Plans are not true serverless functions and are
the same as App Service Plans. You can define the autoscale settings and get complete
control over how the function scales.

Note To sum up, if you have a true serverless scenario and your code runs for a
short duration, then choose the Consumption Plan. To avoid cold-start issues, you
can either use the Premium Plan or use the Dedicated Plan. You can also use the
Dedicated Plan if you have long-running code and you need greater control over
how the function scales.

Pick a Stateful or Stateless Solution

You need to evaluate the customer scenario and decide whether you need to pass

the execution state from one function to another. For example, say you are building a
shopping cart application. You have a function that validates the customer order and
passes on the payment status to the following function that processes the order if the
payment is complete. In this scenario, you need to pass data from the first function

to another. You may have a more complex scenario where you need to build multiple
functions, and each function executes like a workflow. For example, you may have two
functions processing data, and these two functions will send the data to a third function
that will aggregate the data and process it further. You need to build a stateful solution
for all such scenarios. You can orchestrate stateful functions workflows using Azure
Durable Functions. We should use the Azure Durable Functions service for all such
scenarios where you can facilitate exchanging data and state among functions.

You may have simple scenarios such as executing code based on a schedule or
building an Azure function set that performs CRUD operations and gives you the data
results when invoked using an HTTP trigger. In such scenarios, you can use Azure
Functions instead of Azure Durable Functions as you are not interested in maintaining
and exchanging data among the functions.

506

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

Note You can also build workflow using Azure Logic Apps. For the stateful
scenarios discussed, you can use Logic Apps instead of Durable Functions.
However, Durable Functions is best suited for programmers. Programmers can
customize the implementation to a larger extent using Durable Functions.

Mitigate Delay Startups

Azure functions execute when triggered. Once they complete execution, they go into an
idle state and finally into a sleep state. Azure functions wake up and start executing only
when they are triggered. However, the functions do not start executing instantaneously
when triggered. They take some time to wake up from the sleep state and get warmed
up before they can start processing the request. As mentioned, this phenomenon is
referred to as the cold-start phenomenon. If you are building a real-time application,
then the function needs to be active at all times. It must execute as soon as it gets
invoked. You must have at least a warmed-up instance that can start execution as soon
the function gets triggered. For all such scenarios, you cannot use Azure functions
running on a Consumption Plan. You may choose to design an alternative solution using
Azure WebApp or some other service that will take care of the real-time needs of the
application. Alternatively, you can choose to run your Azure functions on a Premium
Plan. The Premium Plan ensures that at least one of the instances is always up and ready
to serve an incoming request.

For example, say you are building an Internet of Things (IoT) application that
monitors the temperature of a room. If the temperature goes beyond a particular limit,
the IoT application needs to invoke an Azure function that can instantly generate a
notification or a warning. You cannot run this Azure function on the Consumption Plan
as you may encounter a delay in starting up the Azure function when triggered, and this
will delay the generation of the notification. If the notification gets delayed, then there
can be severe consequences for the apparatus and systems in the room being monitored.
To address such scenarios, you should use a Premium Plan or look for an alternative
PaasS service to generate notifications for the system on demand.

507

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

Get the Correct Bill to Fit Your Budget

Cost planning is an essential aspect while designing a cloud-based solution for your
application. In Azure Functions, you do not have control over the scaling aspects of
the hosted application. New instances get added on the fly when the incoming load
increases, and you get billed for all the instances that get added. However, you get
billed for the period when the function executes on that instance. You may have a
scenario when your application needs to scale exponentially during peak hours. In
such scenarios, new instances get added on the fly to handle the incoming traffic, and
your cost spirals exponentially. You may not have factored in the exponential scaling
while designing the Azure function. In such scenarios, you must consider all the scaling
scenarios and deduce the actual cost incurred for the Azure function. You may also
choose options to control the degree of scaling and plan the number of instances the
Azure function can scale so that the cost incurred for the Azure function is well within
the limit.

Handle Long-Running Code

Azure functions are best suited to host code that executes for a shorter duration.
However, you may have scenarios where you need to run your code for a longer
duration. You should consider breaking the code into smaller chunks and running each
of these functions in an Azure function in such a scenario. You may have a scenario
where you need to run a long-running application. For example, you need to run a
polling application that executes for a longer time interval. You may have challenges
when splitting such applications into smaller chunks. You can choose to run the Azure
function on a Dedicated Plan that allows code to run for a longer time interval to address
such scenarios. Alternatively, you can choose to run the Azure function on a web job as a
background process or WebApp.

Note You can break the long-running code into smaller chunks and run each of
these smaller chunks in an Azure function. In some scenarios where you cannot
break down the code into smaller units, you can host the code on an Azure function
running on the Dedicated Plan.

508

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

Facilitate Integration and Communication Among Other
Azure and External Services

You may need to integrate Azure functions with other Azure services or external services.
For example, the Azure function needs to pick the data from the Apache Kafka queue
and process it. In all such scenarios, check whether there is an existing binding available
to interact with the service. If there are no existing bindings available, try to build a
custom binding to help you interface with other services and exchange data. Bindings
help you interact with other services declaratively, and you do not need to write much
code to get this working. However, suppose you see that you do not have an existing
binding that supports your scenario, and it is not easy to implement a custom binding
for that scenario. In that case, you can choose to implement custom code in the Azure
function or build an external component that can facilitate communication with the
external service.

You need to make sure you can communicate with other Azure services and the
external component securely. Make sure you bring in the best security practices to
make sure that your implementation is secured, reliable, and fault tolerant as much as
possible. The security practices can include configuring cross-origin resource sharing
(CORS) for your function access, monitoring the incoming request header and the
body parameters, filtering out the unwanted or malicious requests, validating the
authentication and authorization for the function app, and more.

Identify and Manage the Bottlenecks

Azure functions are serverless components, and the underlying infrastructure takes care
of all the scaling needs. The functions can scale to a considerable amount automatically
to manage the incoming loads. However, the Azure functions may interface with other
PaaS-based or IaaS-based services that can scale within a particular limit. For example,
you have an Azure function running on the Consumption Plan. The Azure function
inserts data into an Azure SQL Database instance. During peak hours, a large number
of concurrent requests hit the Azure function, and the function scales to a large number
of instances to handle the incoming traffic. Each of these function instances may hit

the Azure SQL Database instance at the same time. Azure SQL Database may not be
able to scale to that extent and handle the incoming traffic. This action will resultin a
performance bottleneck for the Azure SQL Database instance. Even though the Azure

509

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

function can scale and handle the incoming load, the SQL Database instance cannot
scale to that extent. Your solution as a whole incurs performance bottlenecks. You must
identify all such scenarios and implement strategies to handle them. You may need to
control the degree of concurrency for the Azure functions using queuing mechanisms.
You can add the items to be processed in a queue and then send a finite number of items
to the Azure function for processing to avoid spinning out a large number of instances
while scaling out to manage the incoming load.

Make Your Solution Fault Tolerant

You must make your solution fault tolerant. If the Azure functions fail to process the request,
you must have mechanisms to process the request again. You should have a robust retry
mechanism in place. The retry count should be a finite number and easily configurable for
the solution. For example, if the function fails to process a request, it should send the failed
requests to a queue and accumulate all the failed requests. After a specific time interval, it
should pick up items for the failed queue one by one and process the request.

You may have a scenario where the Azure function picks up an item from the
queue and processes the item. The Azure function may encounter an issue where the
function will pick up the item but cannot process it due to the unavailability of another
dependent service. This action will result in the function picking up the items from the
queue and not processing them. You end up losing all the items in the queue, and none
of the items is processed. In all such scenarios, you must have a circuit breaker pattern
implemented. If the function fails to process the item in the queue, it should not pick the
next item in the queue. It should not pick any item until the depending service is up and
the items can get processed. Also, it should add the failed item in another queue to retry

processing it later.

Note The function app can invoke other services either running in the Azure
environment or running outside Azure in the on-premises environment or other
clouds. These services may fail to process the requests, and the function app will
keep invoking these services again and again even if these services are failing.
The circuit breaker pattern will help in monitoring these service calls. After a
reasonable number of continuous failures, it will instruct the function app not to
call these services as if you are breaking the circuit.

510

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

There can be many scenarios where we need to have a fault-tolerant mechanism in
place. It is highly essential to incorporate fault-tolerant mechanisms so that the Azure
function can efficiently execute the business functionality.

Secure the APIs Developed Using Azure Functions

You build APIs using HTTP-triggered Azure functions. These APIs may perform a wide
range of actions that can be either simple CRUD operations or complex business logic
processing. You must secure these APIs to prevent unauthorized access. The best way
to secure them is by integrating the HTTP-triggered Azure functions with the Azure
API Management service or an alternate third-party service similar to this. All your
requests for these functions will get routed through the API Management service. You
can configure and manage the request and response parameters in the header and the
body, configure CORS settings, decide on whom to allow and whom not to allow, and
do many such activities using the API Management service. You can even integrate
the API Management service with Azure Active Directory and perform OAuth-based
authentication.

Facilitate Efficient Monitoring and Debug Failures

You must ensure that you integrate Application Insights or any other alternative
monitoring and logging third-party solution with Azure Functions. Logs and metrics
help you to debug applications. In the case of Azure Functions, you do not have access to
the underlying code hosting infrastructure. So, you must log all information and failures
to figure out the root cause and use the logs for audit activities.

Application Insights provides an efficient mechanism to capture logs and metrics.
You get rich visualizations of the metrics and logs that help you analyze your application,
hosting infrastructure, and hosting environment with ease.

Incorporate DevOps Practices and Bring in an laC
Approach

You should avoid working with Azure functions in the portal and build automation to
create, deploy, and manage Azure functions. You can create automation scripts that will
help you automate your interaction with an Azure function. Automation reduces manual

511

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

errors, and you will benefit in the long run. For example, say you need to replicate
hundreds of Azure functions in the production environment of your customer. It will take
a lot of time if you are creating these Azure functions using the portal. You may be prone
to make mistakes as this process is repetitive and manual. To address such scenarios
efficiently, you should build automation that will help you create Azure functions fast
and with zero errors.

You can use the Azure CLI, Azure PowerShell, and IaC offerings like Terraform or Chef
to build automation for your Azure functions. You can also use ARM templates to build
the automation solution. Using Azure DevOps, you can build the IaC pipeline to spin up
the Azure functions, continuous integration to build and package the function code, and a
continuous deployment pipeline to deploy the package to the Azure functions.

DevOps-mature organizations prefer using automation solutions for creating
and managing cloud resources and infrastructure. You can generate logs for your IaC
activities to analyze and audit in the future.

Bring in a Defensive Programming Approach

Applications can run into exceptions at runtime. You should follow a defensive approach
while processing the business functionality during runtime exceptions and failures. For
example, say your function is processing a couple of images uploaded in Blob Storage.
After processing 30 images, an exception occurs, and the function tries to process the
images again starting from the first image. As a good practice, the function should

not process the first 30 images as they have been already processed, and it should try

to process the images starting from the 31st image. In the defensive programming
approach, the function should resume processing precisely from where it left off when
the exception occurred. Alternatively, you can insert the failed records in a dead-letter
queue or a poison queue and try processing the records in the poison or dead-letter
queue instead of processing all the records.

Pitfalls to Avoid

The following are some of the pitfalls you must avoid while designing applications using
the Azure Functions service:

e Sharing functions in a single function app service
o Processing the input data one piece at a time

512

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

o Hosting the production and development functions in the same
function app service

e Sharing storage accounts across function app services

Sharing Functions in a Single Function App Service

Do not keep all your functions in a single function app service. If you have too many
functions in an app service, your function app may not get enough compute resources
to scale and perform optimally. Analyze the resource compute requirements carefully
and then plan the number of functions you can host in a function app service. You can
logically group the Azure functions based on performance or scaling aspects of the
business functionality they are performing.

Processing the Input Data One Piece at a Time

Do not keep processing the input data one by one. You make a round-trip, and the
function keeps itself busy every time you get input data. The worst is when you are
getting the input data as part of the triggers. The functions need to be triggered again and
again. Try to get the input data in batches and process the data in batches. This action
will increase the performance.

Hosting the Production and Development Functions
in the Same Function App Service

Do not use the same function app service to host production and development
functions. Keep the function app services separate for different scenarios. A function app
service runs on a hosting plan. The hosting plan defines the underlying infrastructure
and the computing needs for the function app service. If you are using the same hosting
plan across multiple function apps, the underlying infrastructure will be shared,
impacting the function app’s performance. A function app running in a development
environment may need less computing power than a function app running in an

actual production environment. So, you need a lower hosting plan in the development
environment as compared to the production environment. Hence, it is advisable to
have a separate function app service running on a hosting plan of its own as per the
computing needs. Try to leverage deployment slots as much as possible. You may plan

513

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

to have a deployment slot for the staging environment and a slot for the production
environment. You can promote new code changes to the staging slot, test the code in the
staging slot, and once all your test passes, swap the code in the staging slot with the code
in the production slot. The new code changes will go to the production slot, and the old
code running in the production slot earlier will be there in the staging slot. This swap
mechanism will ensure that the old production code is intact in the staging slot and can
be rolled back into the production slot if needed.

Sharing Storage Accounts Across Function App Services

You must associate a storage account with a function app service while creating it.

Do not share storage accounts across function app services that are hosting functions.
Sharing storage accounts will bring down the performance of Azure functions, and

in some scenarios each of the functions may generate a high volume of storage
transactions.

Summary

In this chapter, you learned how to design a solution using Azure functions efficiently.
You explored best practices to follow while designing a solution using Azure functions.
You also explored the pitfalls that you must avoid while building solutions for Azure
functions. The better you plan the Azure functions, the more likely you will build a highly
performant and robust solution using Azure Functions.

The following are the key takeaways from this chapter:

¢ You must follow best practices to build performant and robust Azure
functions.

o The best practices include selecting the right hosting plan, using the
correct programming language to fit your scenario, planning the cost
for your Azure function solutions, incorporating retry mechanisms in
the case of failures, and many more.

¢ You must avoid pitfalls such as sharing a function app service with a
large number of functions, sharing storage accounts, not processing
data in batches, and keeping different function app services for
production and development scenarios.

514

CHAPTER 20 BEST PRACTICES AND PITFALLS TO AVOID

We have come to the end of this book. In this book, you learned how to design,
build, deploy, manage, and follow best practices while designing functions for the Azure
Functions service. You learned advanced concepts such as how to use durable functions
and run functions on Azure Kubernetes Service in detail. By now, you should understand
all the necessary concepts needed to build a production-grade Azure function.

515

Index

A

Active directory
authentication/authorization (see
Authentication/authorization)
automation, 290
features, 290
identity management, 290
objective, 290
structure, 289
Application insights/monitor
diagnostics (see Auto-diagnose issues)
logging
creation, 238
enable option, 236-237
function app, 235, 238-239
get function URL, 242
Http trigger, 240
logs, 243-244
monitoring tab, 235-236
resource, 234, 242-243
run.csx file, 241
testing code, 241
transaction search tab, 243
objectives, 234
structure, 233
Application programming interface (API)
Cosmos DB, 203-232
key permission, 84

© Ashirwad Satapathi and Abhishek Mishra 2021

management service (see Management
service)

serverless, 165-201

table staorage binding, 125-146
Artificial intelligence (AI), 422
Authentication/authorization

app creation, 295

assigned roles tab, 305

authentication tab, 299

authorization (function code), 309-312

credentials, 301-302

definition, 291

function app, 292, 295-296

Function.proj file, 308

get function Url, 298

grant admin consent/permissions, 304

Http trigger, 297

identity provider, 299

Microsoft identity provider, 300-301

permissions tab, 303-304

process, 292

registrations, 303

resource, 292

review creation, 293-294

roles, 291

service editor, 307

template ID, 306

testing code, 298

users tab, 305

517

A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3

https://doi.org/10.1007/978-1-4842-7122-3#DOI

INDEX

Auto-diagnose issues steps, 150, 164
categories, 246 structure, 147
compilation error (.csx), 244, 247 template, 151-152
execution/errors sections, 246-247 third-party service, 149
function compilation error, 248 triggers (see Triggers/Bindings)
general information section, 248 Blob storage bindings
overview tab, 245 cloud explorer view, 121-122
search box, 246 configuration, 113
Azure Kubernetes Service (AKS) see containers, 109
Kubernetes-based Event-Driven expression, 114
Autoscaling (KEDA) file generation, 115

function.json file, 109-110
functions template, 113
GetEnvironmentVariable method, 117

B

Bindings integration options, 107
attributes class key process, 123
adding class, 156 local.settings.json, 116
class library (.NET Standard)., 155 log message, 118
CustomFormatBinding project, 155 meaning, 106
FormatterBindingAttribute class, 156 outcontainer, 109-111
NuGet package, 155 output binding, 108
project creation, 153-154 package manager console, 115
BindingStartup class, 160 POCO class, 116
data format/conversion, 149, 163 primary objective, 112
declarative configurations, 148 project creation, 112
execution output, 163 run.csx file, 110
extension class, 159-160 scenarios, 106
FormatterModel class, 157 schedule based report, 119-121
function project details, 152 Serialize method, 118
Http trigger, 153 structure, 92
local.settings.json file, 162 storage account, 108
logic class, 157-159 Visual Studio, 115

objectives, 148
project creation, 151

C

requirements, 148

scenario, 148-150 Cognitive services
service exchange data, 147 artificial intelligence, 422
startup class, 160 categories, 422

518

document classifier function, 445-447
Feedback Analyzer
function, 435-437
objectives, 422
sentiment analysis, 428-435
serverless solution, 437-445
structure, 421
text analytics (see Text analytics)
Command-line interface (CLI), 11
core tools, 23-24
CURL request, 28
execution, 27-28
function project, 26
GET request, 28
host.json/local.settings.json files, 26
installation, 24-25
node package manager, 24
prerequisites, 23
project creation, 25
trigger, 26
worker runtime, 25
Containers
container registry
action process, 407-408
admin user, 410
authentication, 411
Docker run command, 409
function app, 408-410
HTTP-triggered function, 409
push option, 411
repositories tab, 411
resource, 405-406
subscription details, 406-407
websites, 405
control plane node, 403
hosting environment, 402
KEDA, 401
objectives, 402

INDEX

operating system-level
virtualization, 402

production scenario, 403

registry information, 402

replica set, 403

serverless nodes, 404-405

structure, 401

Continuous Delivery (CD)

agent job/task, 393-394
artifact adding, 391-392
deployment process, 396
DevOps, 373-374
function app, 398

logs, 397

release creation, 395
release pipeline, 388-389, 396-397
response, 399

stage name tag, 391
task/save option, 395
template, 390

view, 398

Continuous Integration (CI)

Agent job 1 tag, 386-387
AzurePipelines, 381-382
build process, 385-386
classic editor, 380
DevOps, 373-374
GitHub repositories, 380-381
pipeline creation, 379
save option, 383-384
status views, 388
template, 383

triggers tab, 384-385

Cosmos database (DB)/functions

account creation, 207-208
aspects, 203

connection string value, 218
container, 209-212

519

INDEX

Cosmos database (DB)/functions (cont.)

CRUD operations, 226
database ID/scroll down, 210-211
data explorer, 219-220
data models, 204
execution output, 221
functionl.cs code, 218-219
function project, 214-215
HTTP trigger
Function?2.cs code, 223-225
input binding, 222
processed items, 225-226
selection, 223
item section, 220
JSON document, 220-221
key concepts, 231
local.settings.json code, 217
new project creation, 214
objectives, 204
partition key, 213
primary key/URI, 231
project details, 216
requirements, 205
resource, 206-209
review creation, 207
SDK/interaction, 227
stored procedures, 226-231
subscription, 207
trigger, 217

D, E

Designing/building functions

APIs development, 511
bottlenecks, 509

cold-start phenomenon, 505
communication, 509

520

consumption plan, 502
cost planning, 508
defensive approach, 512
external service, 509
guidelines, 502
handle long-running code, 508
hosting plan, 505
IaC approach, 512
integration, 509
key concepts, 514
mitigate delay startups, 507
monitoring/debug failures, 511
objectives, 501
PaaS/IaaS service, 503
performant/robust
solution, 514
pitfalls
functions, 512
input data, 513
production/development
functions, 513
sharing/single function, 513
storage account, 514
programming language, 504
scaling aspects, 504
scenarios, 503
solution fault tolerant, 510
stateful/stateless solution, 506
structure, 501
DevOps
application lifecycle, 374-375
CI/CD pipelines, 373-374
function app, 376
objectives, 374
project creation, 377
SDLC models, 373
structure, 374

Document classifier function
destination container, 446
DocumentClassifier

function, 446
function execution, 446-447
source container, 445

Durable functions
activity function, 451
application patterns

aggregator, 456
async HTTDP, 455
details, 453
fan-out/fan-in pattern, 453
function chaining
pattern, 454
human interaction, 456
monitor events, 455
benefits, 452
C#/F#/Node.js, 450
components, 451
key concepts, 467
objectives, 450
orchestrator function, 451
programming patterns, 452
project implementation
app project, 460
boilerplate code, 462
creation, 457
details, 458
empty selection, 459
function name, 461
orchestration template, 462
orchestrator client URL, 466
programming patterns, 467
type, 457
workflow, 463-466
structure, 449
workflow design, 450

INDEX

F, G
FeedbackAnalyzer function, 435-437
Function apps

command line (see Command-line
interface (CLI))
objectives, 12
portal creation
add option, 21
browser process, 23
button creation, 13
click functions, 20
configuration details, 14-15
create tab, 18-19
hosting details, 15-16
login process, 12
monitoring details, 16-17
resource, 19-20
search bar, 12
subscription, 13
tags, 17-18
trigger selection, 21
Url website, 22
structure, 11
Visual Studio (see Visual Studio)

Function as a service (FaaS)

advantages/disadvantages, 5

Azure functions, 2-3

hosting option
consumption plan, 6-7
dedicated plan, 8
premium, 7

objectives, 1-2

programming languages, 2

scenarios, 8

serverless cloud services, 3

structure, 1

WebJobs vs. function, 4-5

521

INDEX

H

Hypertext transfer protocol (HTTP)
execution console, 131
Functionl.cs, 129-130
new project creation, 127
objectives, 125-126
project details, 128
query string, 131
query string/POST parameter

value, 126
routing process
business processing, 132
execution process, 134
functionl.cs, 133
Host.json, 132
navigation, 132
routePrefix parameter, 132
URL, 134-135
scenarios, 126
SQL (see Structured Query
Language (SQL))
structure, 125
table storage (see Table storage
binding)
template, 128-129
verbs/methods, 126

1, J
Infrastructure-as-a-service (IaaS), 503
Infrastructure as Code (IaC), 503, 512
Integrated development
environment (IDE), 11
deployment slots
Azure Function App
(Windows), 358
blue-green deployment, 352
Functionl.cs, 354

522

function app, 360-361
FunctionAppDeploy project, 356
get function, 362
output window, 360
publish tab, 360
publish tag, 356
resource group, 358-359
response, 362
sidebar menu, 352-361
slot name, 353
target selection, 357
view option, 354
key concepts, 371
objectives, 340
structure, 339
Visual Studio (see Visual Studio)
Integration platform as a
service (IPaaS), 470
Internet of Things (IoT) application, 65

K

Key Vault

access policy
access policies, 285
response, 286
secret permissions, 285-286
system-assigned identity, 284-285
vault access model, 266

advantages, 265

creation, 266

networking, 266

objective, 264

portal configuration
developing function, 280
function app, 274
functions creation, 280
hosting, 274-275
HttpTriggerl function, 281-282

monitoring, 275-276
resource, 279
response, 284
review creation, 278
search box, 274

screen configuration, 282-283

source code, 282

tags, 277

value configuration, 278-279
resource, 270
review creation, 269
search box, 265
store secrets

current version, 273

generate/import, 271

identifier, 273

myApiKey, 272

upload option, 271-272
structure, 264
tags, 268
validation check, 269-270

Kubernetes-based Event-Driven
Autoscaling (KEDA)
authentication method, 414, 417
containers tab, 412
deployment YAML file, 417
external IP address, 418
integrations tab, 414-415
key concepts, 419
Kubernetes Service, 412
login, 416
pod verification, 417
resource, 412
review creation, 415-416
serverless nodes, 404-405
subscription details, 413
web browser, 418
Kusto Query Language (KQL), 243

INDEX

Logic apps workflow
advantages, 471
connectors act, 470
file content, 480
function app

configuration, 482-483
consumption, 486

creation, 481

deployment, 488

encrypted message content, 498
EncryptFunc, 492

field tab, 496

file completion, 498

Google Drive, 494-495

HTTP trigger/request, 484, 489-493
HttpTriggerl function, 485-493
JSON payload, 490

message content, 490-491
POST URL, 497

resource tab, 483

review creation, 482

schema generation, 489

search box, 486, 491-492

send option, 497

sign in, 495

subscription tab, 486
validation check, 487

objectives, 470
portal

configuration, 473
consumption, 472

designer, 474

dynamic content menu, 477
eeview creation, 472

HTTP request, 474-476
JSON payload, 475

523

INDEX

Logic apps workflow (cont.)
POST requests, 479-480
POST URL, 478-479
reponse request, 477
resource, 473
search box, 471
structure, 470

M, N
Management service
advantages, 316
different units/project teams, 316
integration
account creation, 319-320
back-end service, 330-331
browse tab, 327
function app, 318-321, 326-329
Function.proj code, 323-324
Http trigger, 321-322
management, 324
policy, 331
project details, 318-319
query parameter, 332-334
request services, 336
resource, 317, 324
response, 334-337
subscription details, 325
tabs, 325-326
testing code, 322-323
key concepts, 337
objectives, 316
requests/responses, 316
structure, 315
Monitoring function
action group, 254
alert rule, 250, 259
condition, 251

524

configuration, 252-253
email selection, 256-257
functions, 250

metrics tab, 249
notifications, 254-255
review creation, 258
scale out tab, 259-260
stop web app, 252

O

One-time password (OTP), 63-90

P

Platform-as-a-service (Paa$S), 168, 503

Q

Queue storage triggers/SendGrid bindings
access keys, 74
account creation, 66
application component, 64
configuration, 71-72
connection string, 75
function execution output, 77
local.settings.json file, 73-75
message creation, 76
objectives, 64
OTP mailer, 88-89
project creation, 70
queues, 68-69
resource, 65
review process, 66-67
scenarios, 64
SendGrid (see SendGrid bindings)
storage account, 66-68
structure, 63

templates, 70-71
test message expiration, 76
trigger selection, 72-73

R

Runtime 1.x/2.x, 44-46

S

Scaling instances, 260-261
SendGrid bindings
account creation, 82
API keys, 84-85
contact details, 81
create option, 79
email details, 83
function execution output, 88
identity, 82
local.settings.json code, 86
manage option, 84
OTP mailer, 88-89
queue message, 87
resource creation, 78
scenarios, 77-78
search option, 78-79
sender information, 82-83
single sender creation, 83
source code, 85-86
subscription details, 80
Sentiment analysis
details, 431
feedback, 428, 434-435
Http trigger, 432
local.settings.json, 432
new project creation, 428-429
NuGet package, 432
Payload.cs, 433

INDEX

POCO model, 433
template, 429-430

Serverless APIs/Proof of concepts

authorization levels, 176
Azure function, 178-179
concepts, 173
CreateProduct function, 180-183
DeleteProduct function, 186-188
GetProductByld function, 190-193
GetProduct function, 188-190
local.settings.json file, 177
new project creation, 174
product class, 178
project information, 175
System.Data.SqlClient package, 178
tasks, 173-174
templates, 175
testing
CORS property, 197
CreateProduct function, 196
DeleteProduct function, 198
DeleteProduct function, 198
endpoints, 195
function project, 194
GetProductByld function, 199
GetProducts function, 200
UpdateProduct function, 197
trigger type/authentication level, 176
UpdateProduct function, 184-185

Serverless solution

BlobContainerClient types, 442

blob storage, 440

cloud services, 3

details, 439

DocumentClassifier function, 443-445

GetLanguage/
UploadBlobToContainer, 442

local.settings.json file, 441

525

INDEX

Serverless solution (cont.)
project creation, 437
storage account’s connection, 441
template, 438
TextAnalyticsClient type, 441
timer trigger selection, 440
Software Development
Lifecycle (SDLC), 373
Structured Query Language (SQL)
architecture diagram, 167
database engine
connection string, 171
deployment option, 169
fields, 170
instance creation, 169
networking tab, 170
PaasS platform, 168
ProductInformation table, 172
resources, 171
search bar, 168
objectives, 166
operations, 168
problem statement
(Asgard Inc), 166-168
serverless (see Serverless APIs/Proof of
concepts)

T, U

Table storage bindings
connection string, 138-139
local.settings.json, 139
MathResult class, 141
meaning, 135
NuGet package, 139
prerequisite, 136
resource, 136
ResultTable, 141

526

source code, 140-141
storage account, 136-138
template, 143

to-do API, 141-146
ToDoRead class, 144-145

Text analytics resource

cognitive services, 424
entity recognition, 424
keys/endpoint, 428
language detection, 424
marketplace, 425

new creation, 426
phrase extraction, 424
review creation, 426
search box, 425
sentiment analysis, 424
validation process, 427
well-established algorithms, 423

Timer trigger

adding function, 100
app creation, 98-99
application insights, 96-97
blob storage (see Blob Storage
bindings)
boilerplate code, 102
configuration details, 95
consumption plan, 92
files, 101
function app creation, 94
function.json file, 102-103
hosting details, 96
integration, 103
invocation details, 105
modification, 103-104
NCrontab expression, 93
objectives, 92
portal/search bar, 94
resource, 99-100

run.csx file, 102
scheduling application, 91-92
screen option, 100
structure, 92
tag details, 98
usage, 93
view logs, 104
Triggers/Bindings
Blob storage, 48
database, 206-221
CURD operations, 222-226
definition, 41-42
event grid, 49
functions, 43
HTTP request, 48-49
implementation process
account creation, 55
action creation, 53
adding process, 54
binding output, 58
Blob container, 61
function app, 52
integration, 57
key process, 61
message text, 60
output, 57
prerequisite, 50
queue process, 51
queue storage trigger, 55
resource creation, 52
review creation, 52-53
source code, 59
Blob Storage container, 51
tab formats, 54
test coding, 58
objectives/interaction, 42
RabbitMQ, 50
services, 42

INDEX

Queue Storage, 47

structure, 41
unidirectional/bidirectional, 43
use cases, 46

Visual Studio

app project creation, 30

authorization level, 32

Azure function app

(Windows), 345-346

browser, 33

C# extension, 29

creation, 341-342

code configuration
application insights resource, 368
authorization level, 365
deployment status, 369
execute function, 370
FunctionApp function, 365-366
function project, 362
generation, 32
hosting plan, 367
HttpTriggerFunction, 364-370
key-value pair, 370
namespace, 364
.NET runtime, 364
programming language, 363
region/location selection, 369
resource group, 367
runtime stack, 366
storage account, 368
trigger type, 364
Windows, 367

debugging options, 33

finish tab, 349

functions

527

INDEX

Visual Studio (cont.)

copy option, 39
create option, 37
development workload, 34
execution output, 39
function execution, 38
integrated development
environments, 40
prerequisites, 34
project creation, 35
template details, 38
templates, 36

HttpTrigger selection, 31
namespace, 31

new project creation, 340
output window, 350
prerequisites, 29

publish tab, 344-350
Sign in button, 343-344
subscription/view, 347
target, 345

template details, 341-343
TestHttpFunction, 31-32
URL button, 351

function app creation, 348
functionl.cs option, 351
functions extension, 30
GET request, 352

W XY,Z

WebJobs vs. function, 4-5

528

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Azure Functions
	Structure of the Chapter
	Objectives
	Introduction to Azure Functions
	Introduction to Serverless
	Azure WebJobs vs. Azure Functions
	Advantages and Disadvantages of Azure Functions
	Hosting Plans for Azure Functions
	Consumption Plan
	Premium Plan
	Dedicated Plan
	Use Cases for Azure Functions
	Summary

	Chapter 2: Build Your First Azure Function
	Structure of the Chapter
	Objectives
	Create Functions Using the Azure Portal
	Create Functions Locally Using the Command Line
	Create Functions Using Visual Studio Code
	Create Functions Using Visual Studio
	Summary

	Chapter 3: What Are Triggers and Bindings?
	Structure of the Chapter
	Objectives
	Introduction to Triggers and Bindings
	Supported Triggers and Bindings
	Trigger and Binding Use Cases
	Use Case: An Azure function gets triggered when a message arrives in a queue, and the processed message is put into another queue
	Use Case: A scheduled job picks up images for Blob Storage at a particular time interval and then processes and stores them back in the Blob Storage
	Use Case: An HTTP call invokes an Azure function to execute some business logic
	Use Case: An event grid can invoke an Azure function to send an email with event data
	Use Case: RabbitMQ triggers an Azure function that processes the message sent by RabbitMQ and puts the processed message in Azure Cosmos DB

	Implement Triggers and Bindings for Azure Functions
	Summary

	Chapter 4: OTP Mailer with Queue Storage Trigger and SendGrid Binding
	Structure of the Chapter
	Objectives
	Getting Started with a Queue Storage Trigger and Use Cases
	Build a Sample Application Using a Queue Storage Trigger
	Getting Started with a SendGrid Output Binding and Use Cases
	Build a Sample Application Using the SendGrid Output Binding
	Create an OTP Mailer Using a Queue Storage Trigger and SendGrid Output Binding
	Summary

	Chapter 5: Build a Report Generator with a Timer Trigger and Blob Storage Bindings
	Structure of the Chapter
	Objectives
	Getting Started with Timer Triggers and Use Cases
	Build a Sample Application Using a Timer Trigger
	Getting Started with Blob Storage Bindings and Use Cases
	Build a Sample Function Using a Blob Storage Binding
	Create a Report Generator Using a Blob Storage Binding and Timer Trigger
	Summary

	Chapter 6: To-Do API with an HTTP Trigger and a Table Storage Binding
	Structure of the Chapter
	Objectives
	Getting Started with HTTP Triggers and Use Cases
	Build a Sample Application Using an HTTP Trigger
	Routing in HTTP-Triggered Azure Functions
	Getting Started with Table Storage Bindings and Use Cases
	Build a Sample Application Using a Table Storage Binding
	Create a To-Do API with an HTTP Trigger and a Table Storage Binding
	Summary

	Chapter 7: Creating Custom Bindings for Azure Functions
	Structure of the Chapter
	Objectives
	Introduction to Custom Bindings
	Use Cases for Custom Bindings
	Build a Custom Binding for Azure Functions
	Create an Azure Function
	Implement the Binding Attribute Class
	Implement the Binding Logic Class
	Implement the Binding Extension Class
	Implement the Binding Startup Class
	Incorporate the Binding in the Azure Function

	Summary

	Chapter 8: Building Serverless APIs Using Azure Functions and Azure SQL
	Structure of the Chapter
	Objectives
	Problem Statement
	Creating an Azure SQL Database Instance in the Azure Portal
	Building Serverless APIs for the Proof of Concept
	Testing the Serverless APIs for the Proof of Concept
	Summary

	Chapter 9: Serverless API Using Azure Functions and Azure Cosmos DB
	Structure of the Chapter
	Objectives
	Introduction to Azure Cosmos DB and Its Use Cases
	Getting Started with Azure Function Cosmos DB Triggers by Building a Simple Application
	Build an HTTP-Triggered Azure Function to Perform CRUD Operations on Azure Cosmos DB Using Bindings
	Leverage the Azure Cosmos DB SDK to Interact with Cosmos DB from Azure Functions
	Summary

	Chapter 10: Enabling Application Insights and Azure Monitor
	Structure of the Chapter
	Objectives
	Enable Logging Using Application Insights
	Perform Diagnostics for Azure Functions
	Monitor Azure Functions and Create Alerts
	Restrict the Number of Scaling Instances for the Azure Function App
	Summary

	Chapter 11: Storing Function Secrets in Azure Key Vault
	Structure of the Chapter
	Objective
	Getting Started with Azure Key Vault
	Create an Azure Key Vault in the Azure Portal
	Store Secrets in Key Vault
	Create an Azure Function in the Azure Portal
	Add an Access Policy for Azure Key Vault
	Summary

	Chapter 12: Authentication and Authorization Using Azure Active Directory
	Structure of the Chapter
	Objectives
	What Is Azure Active Directory?
	What Are Authentication and Authorization?
	Implement Authentication and Authentication for Azure Functions Using Azure Active Directory
	Summary

	Chapter 13: Securing Azure Functions with API Management
	Structure of the Chapter
	Objectives
	What Is the API Management Service?
	Advantages of Using the API Management Service
	Integrate API Management with Azure Functions
	Summary

	Chapter 14: Deploying Your Azure Functions Using IDEs
	Structure of the Chapter
	Objective
	Deploy an Azure Function to Azure Using Visual Studio 2019
	What Are Deployment Slots?
	Deploy an Azure Function to Deployment Slots
	Deploy an Azure Function to Azure Using VS Code
	Summary

	Chapter 15: Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps
	Structure of the Chapter
	Objectives
	What Is Azure DevOps?
	Create a Project in Azure DevOps
	Create a Build Pipeline in Azure DevOps and Enable Continuous Integration
	Create a Release Pipeline in Azure DevOps and Enable Continuous Delivery
	Summary

	Chapter 16: Running Azure Functions in Containers
	Structure of the Chapter
	Objectives
	Getting Started with Containers and AKS
	What Is Serverless Kubernetes and KEDA in Azure?
	Containerize Azure Functions and Push Them to the Azure Container Registry
	Deploy the Containerized Azure Functions in AKS Using KEDA
	Summary

	Chapter 17: Adding Cognitive Capabilities to Your Azure Functions
	Structure of the Chapter
	Objective
	Getting Started with Azure Cognitive Services
	Getting Started with Azure Text Analytics
	Create an Azure Text Analytics Resource in the Azure Portal
	Build a Serverless API to Analyze Feedback Using Sentiment Analysis
	Test the FeedbackAnalyzer Function Using Postman
	Build a Language-Based Document Classifier Serverless Solution
	Test the Language-Based Document Classifier Function
	Summary

	Chapter 18: Introduction to Azure Durable Functions
	Structure of the Chapter
	Objectives
	Getting Started with Azure Durable Functions
	Benefits of Azure Durable Functions
	Application Patterns
	Fan-Out and Fan-In
	Function Chaining
	Async HTTP APIs
	Monitoring
	Human Interaction
	Aggregator

	Implement an Azure Durable Function
	Summary

	Chapter 19: Integrating Azure Functions in a Logic Apps Workflow
	Structure of the Chapter
	Objective
	Getting Started with Azure Logic Apps
	Create an Azure Logic Apps Solution in the Azure Portal
	Add Azure Functions in Logic Apps Workflows
	Summary

	Chapter 20: Best Practices and Pitfalls to Avoid
	Structure of the Chapter
	Objectives
	Design Guidelines and Best Practices
	Decide to Use Functions or Not for Your Scenario
	Choose the Correct Programing Language
	Choice of Hosting Plan
	Pick a Stateful or Stateless Solution
	Mitigate Delay Startups
	Get the Correct Bill to Fit Your Budget
	Handle Long-Running Code
	Facilitate Integration and Communication Among Other Azure and External Services
	Identify and Manage the Bottlenecks
	Make Your Solution Fault Tolerant
	Secure the APIs Developed Using Azure Functions
	Facilitate Efficient Monitoring and Debug Failures
	Incorporate DevOps Practices and Bring in an IaC Approach
	Bring in a Defensive Programming Approach

	Pitfalls to Avoid
	Sharing Functions in a Single Function App Service
	Processing the Input Data One Piece at a Time
	Hosting the Production and Development Functions in the Same Function App Service
	Sharing Storage Accounts Across Function App Services

	Summary

	Index

