
Hands-on
Azure Functions
with C#

Build Function as a Service (FaaS) Solutions
—
Ashirwad Satapathi
Abhishek Mishra

Hands-on Azure
Functions with C#

Build Function as a Service (FaaS)
Solutions

Ashirwad Satapathi
Abhishek Mishra

Hands-on Azure Functions with C#: Build Function as a Service (FaaS) Solutions

ISBN-13 (pbk): 978-1-4842-7121-6			 ISBN-13 (electronic): 978-1-4842-7122-3
https://doi.org/10.1007/978-1-4842-7122-3

Copyright © 2021 by Ashirwad Satapathi and Abhishek Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7121-6. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Ashirwad Satapathi
Gajapati, Odisha, India

Abhishek Mishra
Mumbai, Maharashtra, India

https://doi.org/10.1007/978-1-4842-7122-3

This book is dedicated to my father, Mr. Upendra Satapathi,
and mother, Mrs. Sabita Panigrahi, for supporting me through

each and every phase of my life. Without your support I wouldn’t
have been able to complete this book.

—Ashirwad Satapathi

This book is dedicated to my super dad, Mr. Balabhardra Mishra,
and loving mom, Mrs. Pragyan Mishra.

—Abhishek Mishra

v

Chapter 1: ��Introduction to Azure Functions��� 1

Structure of the Chapter�� 1

Objectives�� 2

Introduction to Azure Functions��� 2

Introduction to Serverless�� 3

Azure WebJobs vs. Azure Functions�� 4

Advantages and Disadvantages of Azure Functions�� 5

Hosting Plans for Azure Functions��� 6

Consumption Plan�� 7

Premium Plan��� 7

Dedicated Plan��� 8

Use Cases for Azure Functions�� 8

Summary��� 9

Chapter 2: ��Build Your First Azure Function��� 11

Structure of the Chapter�� 11

Objectives�� 12

Create Functions Using the Azure Portal�� 12

Create Functions Locally Using the Command Line��� 23

Table of Contents

About the Authors��� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

vi

Create Functions Using Visual Studio Code��� 28

Create Functions Using Visual Studio�� 34

Summary��� 40

Chapter 3: ��What Are Triggers and Bindings?��� 41

Structure of the Chapter�� 41

Objectives�� 42

Introduction to Triggers and Bindings�� 42

Supported Triggers and Bindings��� 44

Trigger and Binding Use Cases�� 46

Use Case: An Azure function gets triggered when a message arrives in a queue,
and the processed message is put into another queue��� 47

Use Case: A scheduled job picks up images for Blob Storage at a particular time
interval and then processes and stores them back in the Blob Storage�������������������������������� 48

Use Case: An HTTP call invokes an Azure function to execute some business logic�������������� 48

Use Case: An event grid can invoke an Azure function to send an email with
event data��� 49

Use Case: RabbitMQ triggers an Azure function that processes the message sent
by RabbitMQ and puts the processed message in Azure Cosmos DB������������������������������������ 50

Implement Triggers and Bindings for Azure Functions�� 50

Summary��� 61

Chapter 4: ��OTP Mailer with Queue Storage Trigger and SendGrid Binding�������������� 63

Structure of the Chapter�� 63

Objectives�� 64

Getting Started with a Queue Storage Trigger and Use Cases��� 64

Build a Sample Application Using a Queue Storage Trigger��� 65

Getting Started with a SendGrid Output Binding and Use Cases��� 77

Build a Sample Application Using the SendGrid Output Binding�� 78

Create an OTP Mailer Using a Queue Storage Trigger and SendGrid
Output Binding��� 88

Summary��� 90

Table of Contents

vii

Chapter 5: ��Build a Report Generator with a Timer Trigger and
Blob Storage Bindings�� 91

Structure of the Chapter�� 92

Objectives�� 92

Getting Started with Timer Triggers and Use Cases��� 92

Build a Sample Application Using a Timer Trigger��� 94

Getting Started with Blob Storage Bindings and Use Cases�� 106

Build a Sample Function Using a Blob Storage Binding��� 107

Create a Report Generator Using a Blob Storage Binding and Timer Trigger����������������������������� 112

Summary��� 123

Chapter 6: ��To-Do API with an HTTP Trigger and a Table Storage Binding�������������� 125

Structure of the Chapter�� 125

Objectives�� 126

Getting Started with HTTP Triggers and Use Cases��� 126

Build a Sample Application Using an HTTP Trigger�� 127

Routing in HTTP-Triggered Azure Functions�� 132

Getting Started with Table Storage Bindings and Use Cases��� 135

Build a Sample Application Using a Table Storage Binding�� 136

Create a To-Do API with an HTTP Trigger and a Table Storage Binding�������������������������������������� 141

Summary��� 146

Chapter 7: ��Creating Custom Bindings for Azure Functions����������������������������������� 147

Structure of the Chapter�� 147

Objectives�� 148

Introduction to Custom Bindings�� 148

Use Cases for Custom Bindings��� 148

Build a Custom Binding for Azure Functions�� 149

Create an Azure Function��� 151

Implement the Binding Attribute Class��� 153

Implement the Binding Logic Class�� 157

Implement the Binding Extension Class��� 159

Table of Contents

viii

Implement the Binding Startup Class��� 160

Incorporate the Binding in the Azure Function��� 161

Summary��� 164

Chapter 8: ��Building Serverless APIs Using Azure Functions and Azure SQL��������� 165

Structure of the Chapter�� 166

Objectives�� 166

Problem Statement�� 166

Creating an Azure SQL Database Instance in the Azure Portal�� 168

Building Serverless APIs for the Proof of Concept��� 173

Testing the Serverless APIs for the Proof of Concept��� 194

Summary��� 201

Chapter 9: ��Serverless API Using Azure Functions and Azure Cosmos DB������������� 203

Structure of the Chapter�� 203

Objectives�� 204

Introduction to Azure Cosmos DB and Its Use Cases��� 204

Getting Started with Azure Function Cosmos DB Triggers by Building a
Simple Application��� 206

Build an HTTP-Triggered Azure Function to Perform CRUD Operations on Azure
Cosmos DB Using Bindings�� 222

Leverage the Azure Cosmos DB SDK to Interact with Cosmos DB from Azure Functions���������� 226

Summary��� 231

Chapter 10: ��Enabling Application Insights and Azure Monitor������������������������������ 233

Structure of the Chapter�� 233

Objectives�� 234

Enable Logging Using Application Insights�� 234

Perform Diagnostics for Azure Functions��� 244

Monitor Azure Functions and Create Alerts�� 249

Restrict the Number of Scaling Instances for the Azure Function App�������������������������������������� 259

Summary��� 260

Table of Contents

ix

Chapter 11: ��Storing Function Secrets in Azure Key Vault������������������������������������� 263

Structure of the Chapter�� 264

Objective�� 264

Getting Started with Azure Key Vault��� 264

Create an Azure Key Vault in the Azure Portal�� 265

Store Secrets in Key Vault�� 271

Create an Azure Function in the Azure Portal��� 274

Add an Access Policy for Azure Key Vault�� 284

Summary��� 287

Chapter 12: ��Authentication and Authorization Using Azure Active Directory������� 289

Structure of the Chapter�� 289

Objectives�� 290

What Is Azure Active Directory?��� 290

What Are Authentication and Authorization?�� 291

Implement Authentication and Authentication for Azure Functions Using Azure
Active Directory�� 292

Summary��� 312

Chapter 13: ��Securing Azure Functions with API Management������������������������������ 315

Structure of the Chapter�� 315

Objectives�� 316

What Is the API Management Service?�� 316

Advantages of Using the API Management Service��� 316

Integrate API Management with Azure Functions�� 317

Summary��� 337

Chapter 14: ��Deploying Your Azure Functions Using IDEs�������������������������������������� 339

Structure of the Chapter�� 339

Objective�� 340

Deploy an Azure Function to Azure Using Visual Studio 2019�� 340

What Are Deployment Slots?�� 352

Table of Contents

x

Deploy an Azure Function to Deployment Slots��� 352

Deploy an Azure Function to Azure Using VS Code�� 362

Summary��� 371

Chapter 15: ��Deploying Your Azure Functions Using a CI/CD Pipeline with
Azure DevOps��� 373

Structure of the Chapter�� 374

Objectives�� 374

What Is Azure DevOps?�� 374

Create a Project in Azure DevOps�� 377

Create a Build Pipeline in Azure DevOps and Enable Continuous Integration���������������������������� 378

Create a Release Pipeline in Azure DevOps and Enable Continuous Delivery���������������������������� 388

Summary��� 399

Chapter 16: ��Running Azure Functions in Containers��� 401

Structure of the Chapter�� 401

Objectives�� 402

Getting Started with Containers and AKS�� 402

What Is Serverless Kubernetes and KEDA in Azure?�� 404

Containerize Azure Functions and Push Them to the Azure Container Registry������������������������ 405

Deploy the Containerized Azure Functions in AKS Using KEDA�� 412

Summary��� 419

Chapter 17: ��Adding Cognitive Capabilities to Your Azure Functions��������������������� 421

Structure of the Chapter�� 421

Objective�� 422

Getting Started with Azure Cognitive Services�� 422

Getting Started with Azure Text Analytics�� 423

Create an Azure Text Analytics Resource in the Azure Portal��� 424

Build a Serverless API to Analyze Feedback Using Sentiment Analysis������������������������������������� 428

Test the FeedbackAnalyzer Function Using Postman�� 435

Build a Language-Based Document Classifier Serverless Solution��� 437

Table of Contents

xi

Test the Language-Based Document Classifier Function�� 445

Summary��� 448

Chapter 18: ��Introduction to Azure Durable Functions��� 449

Structure of the Chapter�� 449

Objectives�� 450

Getting Started with Azure Durable Functions��� 450

Benefits of Azure Durable Functions�� 452

Application Patterns��� 453

Fan-Out and Fan-In�� 453

Function Chaining��� 454

Async HTTP APIs��� 455

Monitoring�� 455

Human Interaction�� 456

Aggregator�� 456

Implement an Azure Durable Function��� 456

Summary��� 467

Chapter 19: ��Integrating Azure Functions in a Logic Apps Workflow��������������������� 469

Structure of the Chapter�� 470

Objective�� 470

Getting Started with Azure Logic Apps��� 470

Create an Azure Logic Apps Solution in the Azure Portal��� 471

Add Azure Functions in Logic Apps Workflows�� 480

Summary��� 499

Chapter 20: ��Best Practices and Pitfalls to Avoid��� 501

Structure of the Chapter�� 501

Objectives�� 501

Design Guidelines and Best Practices��� 502

Decide to Use Functions or Not for Your Scenario�� 503

Choose the Correct Programing Language��� 504

Choice of Hosting Plan��� 505

Table of Contents

xii

Pick a Stateful or Stateless Solution�� 506

Mitigate Delay Startups�� 507

Get the Correct Bill to Fit Your Budget�� 508

Handle Long-Running Code�� 508

Facilitate Integration and Communication Among Other Azure and External Services�������� 509

Identify and Manage the Bottlenecks��� 509

Make Your Solution Fault Tolerant�� 510

Secure the APIs Developed Using Azure Functions�� 511

Facilitate Efficient Monitoring and Debug Failures��� 511

Incorporate DevOps Practices and Bring in an IaC Approach��� 511

Bring in a Defensive Programming Approach��� 512

Pitfalls to Avoid�� 512

Sharing Functions in a Single Function App Service�� 513

Processing the Input Data One Piece at a Time�� 513

Hosting the Production and Development Functions in the Same Function
App Service�� 513

Sharing Storage Accounts Across Function App Services�� 514

Summary��� 514

��Index�� 517

Table of Contents

xiii

About the Authors

Ashirwad Satapathi works as a software developer with

a leading IT firm and has expertise in building scalable

applications with .NET Core. He has a deep understanding

of building full-stack applications using .NET Core along

with Azure PaaS and serverless offerings. He is an active

blogger in the C# Corner developer community. He was

awarded the C# Corner MVP in September 2020 for his

contributions to the developer community. 

Abhishek Mishra is an architect with a leading

multinational software company and has deep expertise in

designing and building enterprise-grade intelligent Azure

and .NET-based architectures. He is an expert in .NET

full stack, Azure (PaaS, IaaS, serverless), infrastructure as

code, Azure machine learning, intelligent Azure (Azure

Bot Services and Cognitive Services), and robotics process

automation. He has a rich 15+ years of experience working

in top organizations in the industry. He loves blogging and

is an active blogger in the C# Corner developer community.

He was awarded the C# Corner MVP in December 2018,

December 2019, and December 2020 for his contributions to

the developer community.  

xv

About the Technical Reviewer

Carsten Thomsen is primarily a back-end developer but

works with smaller front-end bits as well. He has authored

and reviewed a number of books and created numerous

Microsoft Learning courses, all focused on software

development. He works as a freelancer/contractor in various

countries in Europe, using Azure, Visual Studio, Azure

DevOps, and GitHub. He is an exceptional troubleshooter,

asking the right questions in a most logical to least logical

fashion; he also enjoys working in the areas of architecture,

research, analysis, development, testing, and bug fixing.

Carsten is a good communicator with great mentoring and

team-lead skills and is skilled at researching and presenting

new material.  

xvii

Acknowledgments

We would like to thank the Apress team for giving us the opportunity to work on this

book. Also thanks to the technical reviewer and the editors for helping us deliver this

manuscript.

xix

Introduction

Azure Functions is a function as a service (FaaS) offering on the Azure Platform. In

this book, you will explore Azure Functions in detail and learn how to work with Azure

Functions using a practical and example-based approach that will help you grasp the

subject with ease.

The book will start with the essential topics. You will learn how to set up the

application development environment for Azure Functions. Then you will get example-

based steps for building a serverless solution using a combination of bindings and

triggers in C#. The book will then dive into areas that will help you learn how to create

custom bindings, connect with various data sources, ingest telemetry data for Azure

Functions into Application Insights, and learn various ways to deploy the functions to

the Azure environment.

You will also explore advanced areas such as running Azure Functions in an Azure

Kubernetes Service cluster using Kubernetes Event Driven Autoscaling (KEDA). You will

learn the DevOps way of working with Azure Functions using Azure DevOps, as well as

the best practices you should follow while using Azure Functions.

This book provides production-like scenarios and provides labs that will deliver the

right set of hands-on experience. The practical approach in the book will help you gain

deep proficiency in the subject.

This book is intended for experienced developers, cloud architects, and tech

enthusiasts looking forward to building scalable and efficient serverless solutions using

Azure Functions. Anyone having a prior experience with C# and knowing the Azure

basics can use this book to start their journey in building serverless solutions with Azure

Functions.

1
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_1

CHAPTER 1

Introduction to Azure
Functions
Function as a service (FaaS) is getting more popular every day on all the major cloud

platforms. With FaaS, you can build small chunks of code that run for a short time and

host them on the FaaS cloud offering. You get billed for the time your function runs, and

you do not need to bother about the hosting infrastructure and the scaling aspects.

Microsoft Azure provides Azure Functions as an FaaS offering. You build your

function code and host it on Azure Functions, part of Azure App Service. The underlying

platform takes care of all the hosting and scaling needs. Executing your code on Azure

Functions is cost-effective most of the time compared to other hosting services available

in the cloud.

In this chapter, you will get a basic understanding of Azure Functions that will help

you grasp the next set of chapters with ease.

�Structure of the Chapter
In this chapter, we will explore the following aspects of Azure Functions:

•	 Introduction to Azure Functions

•	 Introduction to serverless

•	 Azure WebJobs vs. Azure Functions

•	 Advantages and disadvantages of Azure Functions

•	 Hosting plan for Azure Functions

•	 Use cases for Azure Functions

https://doi.org/10.1007/978-1-4842-7122-3_1#DOI

2

�Objectives
After studying this chapter, you will be able to do the following:

•	 Understand the fundamentals of serverless computing and Azure

Functions

•	 Identify scenarios where you can use Azure Functions

�Introduction to Azure Functions
Azure Functions is a serverless computing service on the Microsoft Azure platform and

is based on the FaaS computing model. You need to build your code, spin up a function,

and host your code on Azure Functions. The underlying cloud platform manages the

hosting infrastructure and hosting software. You do not need to worry about the scaling

aspects of your hosted code. The underlying Azure platform manages all the scaling

aspects for your code running on Azure Functions. You get billed when the function is

active and doing its work. You do not get billed whenever Azure Functions is idle.

Azure Functions hosts code that runs for a short time interval. However, you can

increase the execution time by choosing an appropriate hosting plan for the function. A

function gets invoked and starts running using triggers. Azure Functions supports a wide

range of triggers. For example, a timer can trigger a function in predefined time intervals,

a new message in the Queue Storage can trigger it, or a simple HTTP call can trigger a

function. Azure Functions interacts with a wide range of services, such as Blob Storage,

Table Storage, Queue Storage, Event Grid, Cosmos DB, Service Bus Queue, and many

more, using bindings. You can declare both the triggers and the bindings declaratively

without writing any code.

Azure Functions supports three runtime versions and an array of programming

languages based on the runtime you select. 3.x is the newest runtime, and 1.x is the

oldest runtime available. You can build your code using any of the programming

languages in Table 1-1.

Chapter 1 Introduction to Azure Functions

3

A function executes whenever it gets invoked by a trigger. The function runs for a

particular time interval and gets into an idle state. It wakes up whenever it gets invoked

again by a trigger. The function takes some time to get warmed up and start executing

whenever it gets triggered.

�Introduction to Serverless
You start getting billed for cloud services as soon as you spin them up. You get billed

even if you do not use the services. Also, you need to plan and configure the scaling

strategy for these services. Some services give you the flexibility to set autoscaling, and

for others, you need to set the scaling configuration manually. In either case, you end up

providing the necessary settings so that the services can scale.

In the serverless cloud services case, you get billed when the service is running and

is executing your hosted code, and you do not get billed when the service is idle and

is not executing anything. You pay the cloud vendor on an actual consumption basis,

which saves you money. The underlying platform manages all the scaling aspects of your

application running inside the serverless service. You need not configure any scaling

settings for the serverless service. The serverless services are intelligent enough to add

new instances to handle incoming traffic and remove the additional instances when the

incoming traffic decreases.

Table 1-1.  Azure Functions Runtimes and Supported Programming Languages

Language Runtime 1.x Runtime 2.x Runtime 3.x

C# .NET 4.7 .NET Core 2.2 .NET Core 3.1

JavaScript Node 6 Node 10 and 8 Node 12 and 10

F# .NET 4.7 .NET Core 2.2 .NET Core 3.1

Java Not supported Java 8 Java 11 and 8

PowerShell Not supported PowerShell Core 6 PowerShell 7 and Core 6

Python Not supported Python 3.7 and 3.6 Python 3.8, 3.7, and 3.6

TypeScript Not supported Supported Supported

Chapter 1 Introduction to Azure Functions

4

Serverless does not mean that the cloud services are not hosted on any server. You

cannot run any code without a server. In the case of serverless services, you do not have

control over the server hosting your code. You need to bring your code and host it on

the serverless services without worrying about the underlying infrastructure. The cloud

vendor manages the underlying infrastructure.

The following are a few of the popular serverless offerings provided by Microsoft

Azure:

•	 Azure Functions

•	 Azure Logic Apps

•	 Azure Event Grid

•	 Serverless Azure Kubernetes Service

•	 Serverless SQL Database

Note  In the case of serverless services and platform as a service (PaaS), you
can get your code and host it on the service without managing the underlying
infrastructure. The cloud vendor manages the infrastructure. However, you need to
manage the scaling aspects in the case of PaaS. The cloud vendor manages the
scaling for the serverless service. In the case of PaaS, you get billed as soon as
you spin up the service. However, in a serverless service, you get billed when the
service is active and executes your code.

�Azure WebJobs vs. Azure Functions
You create a WebJobs job in an App Service Plan. A web job works as a background

worker for your applications hosted on Azure App Service. For example, you can host

an application that facilitates users to upload files in Azure Blob Storage. Usually, these

files will be in a user-specific format. Before the application processes the files, the files

should be transformed into a standard format that the application can understand. In

such scenarios, you can create a web job in the same App Service Plan. This web job

will run as a background worker, pick up the user-uploaded file, and transform it into

a format that the application can understand. Web jobs can get triggered using a wide

Chapter 1 Introduction to Azure Functions

5

variety of triggers such as Azure Queue Storage, Cosmos DB, Azure Blob Storage, Azure

Service Bus, Azure Event Hub, and many more. Azure WebJobs meets all the necessary

developer needs for background processing. However, it shares the same App Service

Plan as Azure App Service. Sharing the same App Service Plan means sharing the same

underlying computing infrastructure. This sharing of the underlying infrastructure leads

to performance bottlenecks at times.

Functions are not just meant to process background tasks. They can host business

logic for applications as well. However, they are well suited to host code that runs for

a short time interval. The functions are serverless offerings and scale independently.

The underlying infrastructure manages all the scaling aspects for the function. Web

jobs are tied to the Azure App Service instances and scale as and when the Azure App

Service instance scales. You need to set scaling configurations explicitly for each web job.

Functions can run as and when triggered using consumption-based plans, or they can

run continuously using a Dedicated Plan. Web jobs are always tied to the App Service

Plan that is a dedicated hosting plan. However, you are not charged separately for web

jobs. They come with the App Service Plan. The Azure portal provides a browser-based

editor that you can use to build, test, and deploy functions inside the Azure portal. This

feature enhances the productivity of the developer. You can integrate Azure Functions

with Azure Logic Apps with ease and build enterprise-grade solutions on Azure. Azure

Functions supports various triggers such as HTTP WebHooks (GitHub/Slack) and Azure

Event Grid that Azure WebJobs does not support.

�Advantages and Disadvantages of Azure Functions
You build your code and host it on Azure Functions without worrying about the

underlying hosting infrastructure. The cloud vendor takes care of all the hosting aspects

such as the hosting server and the hosting software. As a developer, you get more time to

focus on building your application code and working on its functionality. The underlying

infrastructure scales your application without needing you to configure the scale

settings. Also, you get billed when a function gets triggered and the code gets executed.

This feature saves you money. You can use Azure Functions with Logic Apps and build

truly enterprise-grade applications. In fact, you can integrate Azure Functions with a

wide range of Azure services with ease. Azure Functions is well suited to execute code

that runs for a short time interval. You can break down your application functionality

into smaller chunks and host it on Azure Functions. This will help you bring in the

Chapter 1 Introduction to Azure Functions

6

single responsibility pattern at a more granular level. The single responsibility pattern

states that a module or a component of a software program should perform a single

functionality of the program. For example, in a calculator application, you should have

a component or a module that performs an add operation, a different component that

performs a subtract operation, and so on. The component of the application should

be designed to perform a single functionality instead of doing everything for the

application.

However, functions execute when they get triggered and move into an idle state

when they do not do any work. Whenever a function is idle, it will take some time for the

function to spring into action whenever triggered. This is because it will take some time

for the underlying infrastructure to get warmed up and start executing the code. This

phenomenon is referred to as a cold-start issue that you must consider while designing

solutions for Azure Functions. At times, Azure Functions can cost more compared to

hosting your code on Azure Web App. The underlying platform spins up new instances

for Azure Functions whenever the load increases, and you do not have any control over

the scaling aspect. Spinning more instances will increase the cost of your solution. You

should predict the user concurrency for your application and have the right cost estimate

for your solution. In addition, you should devise an appropriate strategy to control or

manage the user concurrency using queues or some other techniques and control the

Azure Functions’ degree of scalability in your solution.

�Hosting Plans for Azure Functions
The hosting plan helps you choose the underlying infrastructure specification for the

function, define how the function should scale, and set up any other advanced features

such as virtual network support that the function will need. You get billed based on

the hosting plan you choose for Azure Functions. The following are the hosting plans

supported by Azure Functions:

•	 Consumption Plan

•	 Premium Plan

•	 Dedicated Plan

Chapter 1 Introduction to Azure Functions

7

�Consumption Plan
In the Consumption Plan case, you do not have control over how the functions scale. The

underlying Azure platform adds or removes instances on the fly based on the incoming

traffic that the functions receive. You do not have any control over the underlying hosting

infrastructure. You get billed when the function runs. This hosting plan is an ideal

serverless plan, but you may encounter a cold-start phenomenon. It takes a while for

the Azure Functions instances to warm up and spring into action whenever triggered.

Your code does not run instantaneously when the function is triggered as it takes some

time to wake up from its idle state. This phenomenon is referred to as the cold-start

phenomenon. In the Consumption Plan case, the function can execute for a maximum

of ten minutes and has a default value of five minutes. The default value of five minutes

refers to the amount of time the function will execute before timing out without explicitly

setting the timeout value for the function.

�Premium Plan
In the Premium Plan case, you can have prewarmed Azure Functions instances that

can spring into action and execute the code as soon the function is triggered. The

prewarmed instances help you overcome the cold-start phenomenon. Like with the

Consumption Plan, you do not have any control over how Azure Functions scales or

over the underlying hosting infrastructure in the Premium Plan case. However, you

get options to choose an SKU (EP1, EP2, or EP3) that will meet the memory and CPU

requirements for your application. The underlying Azure platform manages all the

scaling aspects. You get support for a virtual network. In the Premium Plan case, you

can configure a function to run for a longer duration without timing out. By default, the

function execution will time out after 30 minutes. Your functions can run continuously

or nearly continuously.

Chapter 1 Introduction to Azure Functions

8

�Dedicated Plan
The Dedicated Plan in Azure Functions is the same as the App Service Plan in Azure

WebApp. You get to choose from a wide range of SKUs and sizes compared to the

Premium Plan that will meet the application’s memory and CPU requirements. You can

configure manual scaling or automatic scaling for your functions. You also get virtual

network support. This hosting plan is best suited for long-running applications.

�Use Cases for Azure Functions
The Azure Functions service can fit into any modern application patterns and use cases.

The following are a few of the best-fit scenarios where you can use Azure Functions:

•	 You can build an n-tier application using Azure Functions. You can

break the business and data access logic into smaller chunks and

host each of these chunks in a function.

•	 You can run background processing jobs in Azure Functions.

•	 You can use Azure Functions and Durable Functions to build

workflow-based applications where you can orchestrate each of the

workflow steps using Azure Durable Functions and Azure Functions.

•	 You can use Azure Functions to build microservices-based

applications. Each function can host a business service.

•	 You can use Azure Functions to build schedule-based applications

that run on particular time intervals or during a particular time of day

or month or year.

•	 You can build notification systems to trigger a function to notify an

end user or a system based on conditions and events.

•	 You can use Azure Functions in Internet of Things (IoT) scenarios

to implement functions to perform a business activity or process

the ingested data and put it in storage or send it to the next set of

processing.

•	 You can use Azure Functions and Azure Event Grid in event-driven

scenarios where these functions can get triggered and perform a task.

Chapter 1 Introduction to Azure Functions

9

�Summary
In this chapter, you learned the basics of Azure Functions. You explored what Azure

Functions is and discussed the concepts of serverless computing. You then learned

about how Azure WebJobs is different from Azure Functions and then explored the

advantages and disadvantages of using Azure Functions and the scenarios in which to

use the service. You also learned about the different hosting plans available for Azure

Functions.

The following are the key takeaways from this chapter:

•	 Azure Functions is a serverless computing service on the Microsoft

Azure platform and is based on the FaaS computing model.

•	 You need to build your code, spin up a function, and host your code

on Azure Functions. The underlying cloud platform manages the

hosting infrastructure and hosting software.

•	 The underlying platform manages the scaling aspects for Azure

Functions, and you need not do any scaling configurations.

•	 You get billed when a function executes, and you do not incur any

cost when a function is idle.

•	 Azure Functions supports the Consumption, Premium, and

Dedicated Plans.

•	 You can use Azure Functions in current scenarios like the Internet of

Things, microservices, event-driven applications, and many more.

Chapter 1 Introduction to Azure Functions

11
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_2

CHAPTER 2

Build Your First Azure
Function
You can create a function for Azure Functions using a wide variety of options. If you

are comfortable with command-line interfaces, then you can use Azure PowerShell

or the Azure command-line interface (CLI). You can use an integrated development

environment (IDE) or a code editor like Visual Studio IDE or Visual Studio Code. You can

also use the Azure portal to create a function.

In the previous chapter, you learned the basics of the Azure Functions service and

explored some of its essential concepts. In this chapter, you will explore various options

available to create a function. You will learn how to set up the development prerequisites

and explore how Azure Functions works under the hood.

�Structure of the Chapter
In this chapter, we will explore the following topics:

•	 Creating a function using the Azure portal

•	 Creating a function locally using the command line

•	 Creating a function using Visual Studio Code

•	 Creating a function using Visual Studio

https://doi.org/10.1007/978-1-4842-7122-3_2#DOI

12

�Objectives
After studying this chapter, you will be able to do the following:

•	 Understand the core tools of Azure Functions

•	 Create a function using various tooling options

�Create Functions Using the Azure Portal
In this section, you’ll create a function in the Azure portal. The Azure portal provides

an in-portal editor to create and customize functions. To create a function in the Azure

portal, you will first have to create a function app. Then you can create multiple functions

inside the function app.

To create a function app, visit https://portal.azure.com and log in to the portal

using your credentials (Figure 2-1).

Once your login is successful, you will get redirected to the Azure portal dashboard.

Type function app in the search bar and click the Function App option, as shown in

Figure 2-2.

Figure 2-1.  Sign in to the Azure portal

Chapter 2 Build Your First Azure Function

https://portal.azure.com

13

Now click the Create button, as shown in Figure 2-3, to create a new function app

resource. If you have already created a function, you can see that listed in the portal.

Now you will get redirected to a new screen, as shown in Figure 2-4, where you need

to fill in the required fields for the Basics section. These details are crucial to create your

function app in your subscription.

Select the subscription in which you want to get billed for this Azure function app.

After you select the subscription, choose or create the resource group where you need to

create the function app. Then provide a unique name for your function app. This name

needs to be globally unique, and no other function app should have the same name

across Azure.

Figure 2-2.  Search for function app

Figure 2-3.  Create a new function app

Chapter 2 Build Your First Azure Function

14

You can host either the application code or a container in Azure Functions. Select

the option Code. The runtime stack refers to the language in which you need to create

your functions. This book focuses on working with Azure Functions using C#, so for this

example select .NET Core as the runtime stack.

Note  You can write your application code and host it directly on function apps.
Alternatively, you can containerize your functions and deploy the container in the
function app.

Next, you need to select the version. We discussed the supported runtime stacks

and supported language versions in Chapter 1; refer to Table 1-1. Finally, select the

region where you need to create this function app. It is recommended that you select the

nearest or same geographic region where the consuming services or applications are

hosted.

Once you have filled in all the fields highlighted in Figure 2-4, click Next: Hosting to

configure your function app’s hosting plan–related configurations. Alternatively, you can

click Review + Create to review your function configuration and then click Create to spin

up the function app.

Note A n Azure function app consists of multiple functions. All functions of a
function app share the same resources, configurations, language runtime, and
pricing plan.

Chapter 2 Build Your First Azure Function

15

In the Hosting section, you need to fill in a few more details, as highlighted in

Figure 2-5. You need to select an Azure storage account. You can select an existing

storage account or create a new general-purpose Azure storage account. We need

the storage account for monitoring and logging purposes. All the logs and metrics

data gets stored in the storage account. The storage account also facilitates storing

the code, as well as the binding configuration files for the functions created using the

Consumption Plan or Premium Plan. So, we must have a storage account associated

with a function to facilitate storing the code and the binding configuration files.

Note I f you delete the function app’s storage account, configured while creating
the function app, all the functions that are part of that function app will stop
working.

Figure 2-4.  Provide basic configuration details

Chapter 2 Build Your First Azure Function

16

After selecting the storage account, select the operating system for your function.

Let’s choose Windows as the operating system. Azure Functions on Linux does not

support in-portal editing. We will use the in-portal editor to build the function code,

so let’s use Windows as the operating system. Finally, let’s select the hosting plan. We

can use the Consumption Plan, which is a pure serverless plan. To know more about

the available hosting plans, refer to the “Hosting Plans for Azure Functions” section

in Chapter 1. Once you have filled in the necessary details on this tab, click Next:

Monitoring and navigate to the Monitoring tab.

It is highly recommended that you enable Application Insights for your Azure

function app because it will help you to monitor and analyze Azure Functions. Click Yes

to enable Application Insights and create a new insight. If you already have an insight

provisioned, you can use that. Click Next: Tags, as shown in Figure 2-6.

Figure 2-5.  Provide the hosting details

Chapter 2 Build Your First Azure Function

17

Tags help you categorize Azure resources. You can add tags along with tag values

for Azure resources and use the tags to classify a group of resources. For example, you

can create a tag called Production for all Azure resources running in production or a

tag called Stage for all Azure resources running in the staging environment. In this case,

you can consolidate the billing for all the Azure resources in the production or stage

environment. Adding a tag is optional. However, it is a good practice to add a tag for your

Azure resource. Now click Next: Review + create, as shown in Figure 2-7.

Figure 2-6.  Provide the monitoring details

Chapter 2 Build Your First Azure Function

18

On the Review + Create tab, you will see a summary of the configurations you have

selected for the function app, as shown in Figure 2-8. To create the function app, click

Create. Your configuration inputs for the function app get validated. If there are no

validation issues, then the function app creation will start.

Figure 2-7.  Provide tags if you’d like

Chapter 2 Build Your First Azure Function

19

While your function app is deploying, you will be redirected to a screen like the

one shown in Figure 2-9. Once the deployment of all your function app resources is

completed, you will see an update. Click “Go to resource” to navigate to the function app.

Figure 2-8.  Click Create

Chapter 2 Build Your First Azure Function

20

Figure 2-10 illustrates how the function app will look in the Azure portal. Click

Functions, as highlighted in Figure 2-10, to create your first Azure function.

Figure 2-9.  Click “Go to resource”

Figure 2-10.  Click Functions

Chapter 2 Build Your First Azure Function

21

We need to add a function to the function app. Click Add, as shown in Figure 2-11.

Now let’s select an HTTP trigger for the function and click Add, as shown in Figure 2-12.

Figure 2-11.  Click Add

Figure 2-12.  Select “Function trigger” and click Add

Chapter 2 Build Your First Azure Function

22

Note  You can use the in-portal editor and build your Azure function code using a
C# script. You can use the editor to access the code files and work with the code.
You can also build Azure function code using C# and compile it as a class library.
Then you can host the C# class library in the Azure function. In this case, you do
not have a way to edit the code files using the in-portal editor in the Azure portal.
For proof of concepts and demonstration purposes, you can use the in-portal editor
to write your function, but for building functions for production scenarios, it is wise
to use an IDE.

Now let’s test the Azure function. Click Get Function Url, as shown in Figure 2-13.

Copy the function URL as in Figure 2-14.

Figure 2-14.  Copy the function URL

Figure 2-13.  Click Get Function Url

Chapter 2 Build Your First Azure Function

23

Open the browser, paste the URL into the address bar, add &name=ashirwad at the

URL’s end, and hit Enter. You should see a response like the one shown in Figure 2-15.

�Create Functions Locally Using the Command Line
In the previous section, you learned how to create a function using the Azure portal.

Now let’s explore more interesting developer-focused ways to build a function using the

command line.

To build functions in your local systems, you will need to install the Azure Functions

core tool in your system and the SDKs or the language’s runtime environment that you

will use to develop your functions. The prerequisites for building a function using the

command-line are listed here:

•	 Azure Function Core Tool

•	 .NET Core 3.1

You can install .NET Core version 3.1 from the following location:

https://dotnet.microsoft.com/download/dotnet-core/3.1

To install the Azure Functions Core Tools, visit https://github.com/Azure/azure-

Functions-core-tools and refer to the README.md for installation assistance. We are

using the MSI installer from the repository to install it, as highlighted in Figure 2-16.

Figure 2-15.  Browse the function URL

Chapter 2 Build Your First Azure Function

https://dotnet.microsoft.com/download/dotnet-core/3.1
https://github.com/Azure/azure-Functions-core-tools
https://github.com/Azure/azure-Functions-core-tools

24

Alternatively, you can use Node Package Manager to install the Azure Functions Core

Tools. Open a command prompt and execute the command in Listing 2-1 to install the

Azure Functions Core Tools using Node Package Manager.

Listing 2-1.  Install the Azure Functions Core Tools Using Node Package Manager

npm install -g azure-Functions-core-tools

Note T he Azure Function Core Tools provide a set of command-line utilities
and the Azure Functions runtime to build, develop, and deploy functions from the
command line or a terminal.

Once you have installed the Azure Functions Core Tools, open a command prompt,

and execute the command in Listing 2-2 to verify whether the Azure Functions Core

Tools were successfully installed.

Listing 2-2.  Verify the Azure Function Core Tools installation

func

If the installation is successful, you will see the version for the Azure Functions Core

Tools, as illustrated in Figure 2-17.

Figure 2-16.  Download the Azure Functions Core Tools

Chapter 2 Build Your First Azure Function

25

With the Azure Functions Core Tools installed, you are all set to build your Azure

functions locally. To create a function project, execute the command in Listing 2-3 at the

command prompt.

Listing 2-3.  Create an Azure Functions Project

func init --worker-runtime dotnet

You can also execute the command in Listing 2-4 to create an Azure function project.

Listing 2-4.  Create an Azure Function Project

func init

You will be prompted to choose the worker runtime for the function project.

The worker runtime is the language you will use in this example to build your Azure

functions. Provide the worker runtime and press Enter. The Azure Function Core Tools

will create all essential function files for you, as illustrated in Figure 2-18. The files host.

json and local.setting.json will get created for all the function projects irrespective of

the worker runtime chosen.

Figure 2-17.  Verify the installation for the Azure Functions Core Tools

Chapter 2 Build Your First Azure Function

26

Let’s understand the work of the host.json and local.settings.json files, which

were created in the function project.

•	 The file host.json stores the runtime configuration values, which are

later used by functions when running.

•	 The file local.settings.json stores the configuration values used

by function apps when you are running them locally using the Azure

Functions Runtime Tool.

Note  You can have functions created with multiple languages with version 1.x
of the Azure Functions runtime. However, with versions 2.x and 3.x, all Azure
functions in a function app should be written in the same language and the worker
runtime selected while creating the function project.

Once you have created a function project, you need to create Azure functions inside

it. To create an Azure function, you need to execute the command in Listing 2-5 in the

command-line interface.

Listing 2-5.  Create a Function inside the Azure Functions Project

func Function new --template HttpTrigger –-name TestFunction

You provide the type of function trigger in the template parameter of the command

along with the name parameter. This command creates a function named TestFunction

Figure 2-18.  Create an Azure Functions project

Chapter 2 Build Your First Azure Function

27

that can be invoked using an HTTP trigger. After the command executes successfully,

it will create a TestFunction.cs file, as shown in Figure 2-19. TestFunction.cs will

have the same boilerplate code as in the Azure function that we created using the Azure

portal.

Now let’s run the Azure function using the Azure Functions Core Tools. To do so,

execute the command in Listing 2-6.

Listing 2-6.  Execute the Azure Function

func host start

This command restores all the NuGet packages and then builds the function

project. Once the build finishes successfully, the Azure Functions runtime gets started

and hosts all the functions in the Azure function app. It displays endpoints for all the

hosted functions endpoint, as shown in Figure 2-20. If there is any build error, it will get

displayed in the console.

Figure 2-19.  Create a function inside an Azure Functions project

Chapter 2 Build Your First Azure Function

28

Let’s copy the endpoint/URL for the TestFunction, append the query string

?name=ashirwad to the URL, and then send a GET request to the function using the

command in Listing 2-7.

Listing 2-7.  Send a GET Request to the Azure Function

curl –get http://localhost:7071/api/TestFunction?name=ashirwad

Figure 2-21 shows the response, and you can see that it is the same as what we got for

the function that we created earlier using the Azure portal.

�Create Functions Using Visual Studio Code
In the previous sections, we discussed ways to develop Azure functions locally using a

command line with the Azure Function Core Tools.

Figure 2-20.  Execute an Azure function

Figure 2-21.  Response to CURL request

Chapter 2 Build Your First Azure Function

29

In this section, we will look at ways to leverage the power of Visual Studio Code

to build Azure functions and run them. To follow along with this section, here are the

prerequisites:

•	 .NET Core 3.0 SDK

•	 VS Code

•	 Azure Functions Core Tools

Go to https://code.visualstudio.com/download to download the latest version of

VS Code. You can visit https://dotnet.microsoft.com/download/dotnet-core/3.1 to

install .NET core version 3.1.

If you have not installed the Azure Functions Core Tools yet, you can refer to the

section “Create Functions Locally Using the Command Line.” After installing all the

prerequisites mentioned, open Visual Studio Code and click Extensions to go to the

extension marketplace and search for the C# extension for IntelliSense and debugging

support. Type C# in the search bar and install Microsoft’s extension, as shown in

Figure 2-22. You are free to select any other extension for C# based on your preference.

After this, you need to install the Azure Functions extension from the extension

marketplace to create a function project and deploy it to the Azure infrastructure. To

install it, search for azure function in the search bar, select Azure Functions, and install it,

as shown in Figure 2-23.

Figure 2-22.  Install the C# extension

Chapter 2 Build Your First Azure Function

https://code.visualstudio.com/download
https://dotnet.microsoft.com/download/dotnet-core/3.1

30

Now that you have installed the required dependencies, you are all set to build a

function using Visual Studio Code. Click the Azure extension icon or press Ctrl+Alt+A

to go to the Azure Functions extension to create your function project. Now click Create

New Project or click the icon, as shown in Figure 2-24. You will be prompted to select the

location. Then you will be required to select the language in which you will create all the

functions of this function app. Since the objective of the book is to create functions using

C#, let’s select C# as the worker runtime of your function app.

Then you will get prompted to select the template for the function. For this section’s

purpose, let’s select the HttpTrigger template, as shown in Figure 2-25.

Figure 2-23.  Install the Azure Functions extension

Figure 2-24.  Create a new function app project

Chapter 2 Build Your First Azure Function

31

Next, you will be prompted to give your Azure function a name. Let’s name it

TestHttpFunction, as shown in Figure 2-26.

Then you will be prompted to provide a namespace. Name the namespace of the

function HandsOnAzureFunction.FunctionDemo, as shown in Figure 2-27.

Figure 2-25.  Select HttpTrigger

Figure 2-26.  Provide a name for the function

Figure 2-27.  Provide a namespace

Chapter 2 Build Your First Azure Function

32

Now, you will be prompted to select the authorization level for this function. As

shown in Figure 2-28, you have three authorization levels: Anonymous, Function, and

Admin.

These authorization levels help you restrict the access to your functions from

unwanted users.

Now Visual Studio Code has generated some boilerplate code for the HttpTriggered

Azure function TestHttpFunction to display the value passed to it as a query string, as

shown in Figure 2-29.

As you have created a function, let’s run it and see what response you get. To run

the function, press F5. This action will start the function runtime, host the function, and

list all the functions present in the function project. This action internally runs the func

host start command.

Figure 2-29.  Default generated code for the function

Figure 2-28.  Select the authorization level

Chapter 2 Build Your First Azure Function

33

Once the function app is running, you will be able to see the URL to access the

HttpTriggered function along with a few buttons to restart, disconnect, and other

debugging options at the top, as shown in Figure 2-30.

Copy the URL and append it with the query string ?name=ashirwad. Then send a

request to the function by pasting the URL and the query string in the browser’s address

bar and press Enter. As shown in Figure 2-31, we get a similar response from our function

previously obtained from the other sections.

Figure 2-30.  Run the function app

Figure 2-31.  Function output in the browser

Chapter 2 Build Your First Azure Function

34

�Create Functions Using Visual Studio
In the previous section, we discussed ways to create an Azure function using VS code

and build it using the Azure function runtime. The focus of this section is to create

an Azure function using the Visual Studio 2019 Community edition. You can use any

editions of Visual Studio.

To follow along with this section, here are the prerequisites:

•	 .NET Core SDK

•	 Visual Studio 2019 Community edition

•	 Azure development workload

Go to https://visualstudio.microsoft.com/vs/community/ to download the

latest version of Visual Studio 2019 Community edition. You can visit https://dotnet.

microsoft.com/download/dotnet-core/3.1 to install .NET Core version 3.1.

Before you start building an Azure function using Visual Studio, you need to install

the Azure development workload. To install this workload, open the Visual Studio

installer, click Modify, select the check box for the Azure development workload, and

click Modify to install it, as shown in Figure 2-32.

Figure 2-32.  Install the Azure development workload

Chapter 2 Build Your First Azure Function

https://visualstudio.microsoft.com/vs/community/
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://dotnet.microsoft.com/download/dotnet-core/3.1

35

Once the installation of the workload is completed, open the Visual Studio 2019

Community edition and click “Create a new project,” as shown in Figure 2-33.

Now you can see all the available project templates in the window. Select the Azure

Functions project template as shown in Figure 2-34 and click Next.

Figure 2-33.  Create a new project

Chapter 2 Build Your First Azure Function

36

You need to fill in the project details such as the project name, solution name, and

source location. All of these are required fields. Once you fill in all of those fields, click

Create, as shown in Figure 2-35.

Figure 2-34.  Select the Azure Functions template

Chapter 2 Build Your First Azure Function

37

Now select the runtime version, trigger type, storage account, and authorization level

for your Azure function, as shown in Figure 2-36. You need to set the runtime version to

Azure Function v3, the trigger type of the function to “Http trigger,” the storage account

to “Storage emulator,” and the authentication level as Anonymous; then click Create.

Note  You can connect to your existing storage account in your Azure subscription
instead of the storage emulator.

Figure 2-35.  Click Create

Chapter 2 Build Your First Azure Function

38

Now Visual Studio will generate a function named Function1 with some boilerplate

code as in the case with functions created in other sections. To start the function app,

click TestFunction, as highlighted in Figure 2-37.

Figure 2-37.  Execute the function

Figure 2-36.  Provide the template details

Chapter 2 Build Your First Azure Function

39

Note  By default, the first function in the function project gets named as
Function1 in Visual Studio. But after the project gets created, you can change the
function name by changing the FunctionName attribute’s value.

Once you click TestFunction, it starts the storage emulator, starts the function

runtime, and hosts all the functions present inside the function app.

This activity is similar to using the func host start utility of the Azure Functions

Core Tools. Now you should be able to see the Azure Functions Runtime Tool.

Copy the URL route of the Azure function to send it a request. Paste the URL in the

browser’s address bar, append the query string ?name=ashirwad, and then press Enter to

send a request to the Azure function (Figure 2-38).

Figure 2-39 shows the response from the Azure function. If you notice, the response

will be the same as the functions we have created in other sections of this chapter.

Figure 2-38.  Copy the function endpoint

Figure 2-39.  Function execution output

Chapter 2 Build Your First Azure Function

40

�Summary
In this chapter, you explored different ways to create Azure functions. We learned how to

create Azure functions using the Azure portal. Then you learned how to create a function

using a command-line tool like the Azure Functions Core Tools and code editors and

integrated development environments like Visual Studio Code and Visual Studio.

The following are the key takeaways from this chapter:

•	 You can create a function using the Azure portal. You get an in-portal

editor to write and work on the function code with ease.

•	 You can install the Azure Functions Core Tools and create Azure

functions using a command-line interface. This option helps you

automate the creation of Azure functions.

•	 You can install C# and the Azure Functions extension in Visual Studio

Code and create functions using Visual Studio Code.

•	 You can install an Azure functions workload in Visual Studio and

build Azure functions.

Chapter 2 Build Your First Azure Function

41
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_3

CHAPTER 3

What Are Triggers
and Bindings?
Azure functions are serverless components. They remain in an idle state whenever they

are not doing any work. You need to invoke Azure functions so that they can wake up

and execute the hosted code. Triggers define how the functions run. You can invoke

Azure functions using triggers, and they provide all the necessary input data or the

input payload for the function. Your Azure functions need to send or receive data from

other resources, such as the Queue Storage, Blob Storage, RabbitMQ, and many more, to

Azure Functions. Bindings enable functions to interact with other services declaratively

without needing to write any code.

In the previous chapter, you explored how to create functions using the various

options available. In this chapter, you will explore what triggers and bindings are and

how to configure them for functions.

�Structure of the Chapter
In this chapter, you will explore the following aspects of triggers and bindings:

•	 Introduction to triggers and bindings

•	 Supported triggers and bindings

•	 Triggers and bindings use cases

•	 Implementing triggers and bindings for functions

https://doi.org/10.1007/978-1-4842-7122-3_3#DOI

42

�Objectives
After studying this chapter, you will be able to do the following:

•	 Understand what triggers and bindings are and where to use them

•	 Create and use them with functions

�Introduction to Triggers and Bindings
Triggers define how the functions execute. They wake up functions from their idle state

and make them execute. Functions can be invoked from a wide range of services. These

services invoke functions using triggers and pass on the input data as a payload to the

functions. You can configure a single trigger for an Azure function.

Azure functions need to interact with other services such as Blob Storage, Cosmos

DB, Kafka, and more to achieve business functionality. You can use bindings to facilitate

data exchange between these services and Azure Functions. Functions can send data to

these services or get data from these services as needed.

You do not need to write any code to implement triggers and bindings. You need to

build declarative configurations to enable triggers and bindings and facilitate interaction

with Azure Functions and other services. This functionality saves much programming

effort for you. Otherwise, you would have to write a lot of code and handle complexities

to facilitate these interactions. If you are creating a C# class library for an Azure function

using the Visual Studio IDE or Visual Studio Code, you can decorate your function

method with attributes to enable triggers and bindings. If you are using the Azure portal

to create functions, you can modify the function.json file and add all the necessary

configurations to enable triggers and bindings.

The following is an example of function.json that adds a Blob trigger to the Azure

function created using the Azure portal. This configuration enables a Blob trigger for the

function. The Azure function can accept binary data as input from the Azure Blob.

{

 "dataType": "binary",

 "type": "blobTrigger",

 "name": "blob",

 "direction": "in"

}

Chapter 3 What Are Triggers and Bindings?

43

Triggers are unidirectional. Azure functions can receive data from triggers but

cannot send back any data to the triggering service. Bindings are bidirectional. Functions

can send data to a configured service or receive data from a configured service. The

following are the available directions that you define for the bindings:

•	 in

•	 out

•	 inout

Figure 3-1 illustrates triggers and bindings with an Azure function. The function gets

triggered whenever a message gets added in the Azure Service Bus Queue. Alternatively,

you can use a Storage Account Queue instead of the Service Bus Queue. The message in

the Service Bus Queue is passed to the Azure function as a trigger payload. Azure Queue

Storage and Azure Cosmos DB are configured as bindings. Azure Cosmos DB supports

bindings in both directions. Functions can send and receive data from Azure Cosmos

DB. The Azure Service Bus Queue supports output binding. Azure Functions can send

data to functions. Azure Functions processes the payload message and passes on the

processed output to Azure Queue Storage and Azure Cosmos DB. It can also get data

from Azure Cosmos DB if needed.

Figure 3-1.  Triggers and bindings with Azure Functions

Chapter 3 What Are Triggers and Bindings?

44

Note  You can have a single trigger configured for an Azure function. Triggers
support the input direction. You can have multiple bindings for an Azure function.
In the case of bindings, you can have either input, output, or both directions.

�Supported Triggers and Bindings
Triggers and bindings are crucial for Azure Functions. Actual business scenarios will

need an Azure function to exchange data with other services. Azure Functions supports

a wide range of triggers and bindings. The supported triggers and bindings depend on

the runtime version of Azure Functions. If none of the supported bindings matches your

requirements, you can create your custom binding using .NET and use it anywhere per

your needs.

The following are triggers supported for Azure Functions runtime 1.x:

•	 Blob Storage

•	 Azure Cosmos DB

•	 Event Grid

•	 Event Hubs

•	 HTTP and WebHooks

•	 IoT Hub

•	 Queue Storage

•	 Service Bus

•	 Timer

The following are triggers supported for Azure Functions runtime 2.x and newer:

•	 Blob Storage

•	 Azure Cosmos DB

•	 Dapr

•	 Event Grid

Chapter 3 What Are Triggers and Bindings?

45

•	 Event Hubs

•	 HTTP and WebHooks

•	 IoT Hub

•	 Kafka

•	 Queue Storage

•	 RabbitMQ

•	 Service Bus

•	 Timer

The following are the bindings supported along with the input and output directions

supported for Azure Functions runtime 1.x:

•	 Blob Storage (input, output)

•	 Azure Cosmos DB (input, output)

•	 Event Grid (output)

•	 Event Hubs (output)

•	 HTTP and WebHooks (output)

•	 IoT Hub (output)

•	 Mobile Apps (input, output)

•	 Notification Hubs (output)

•	 Queue Storage (output)

•	 SendGrid (output)

•	 Service Bus (output)

•	 Table Storage (input, output)

•	 Twilio (output)

Chapter 3 What Are Triggers and Bindings?

46

The following are the bindings supported along with the input and output directions

supported for Azure Functions runtime 2.x and newer:

•	 Blob Storage (input, output)

•	 Azure Cosmos DB (input, output)

•	 Event Grid (output)

•	 Event Hubs (output)

•	 HTTP and WebHooks (output)

•	 IoT Hub (output)

•	 Queue Storage (output)

•	 SendGrid (output)

•	 Service Bus (output)

•	 Table Storage (input, output)

•	 Twilio (output)

•	 Dapr (input, output)

•	 Kafka (output)

•	 RabbitMQ (output)

•	 SignalR (input, output)

Note  You cannot create Kafka and RabbitMQ triggers using the Consumption
Plan. Dapper triggers are applicable for the Azure Kubernetes Service.

�Trigger and Binding Use Cases
Let’s discuss some of the use cases for triggers and bindings. These use cases will give

you a further understanding of how to use triggers and bindings in real-time production

scenarios. The following are a few of the use cases:

Chapter 3 What Are Triggers and Bindings?

47

•	 An Azure function gets triggered when a message arrives in a queue,

and the processed message is put into another queue.

•	 A scheduled job picks up images for Blob Storage.

•	 An HTTP call invokes an Azure function to execute some business

logic.

•	 An event grid can invoke an Azure function to send an email with

event data.

•	 RabbitMQ triggers an Azure function that processes the message sent

by RabbitMQ and puts the processed message in Azure Cosmos DB.

�Use Case: An Azure function gets triggered when a
message arrives in a queue, and the processed message
is put into another queue
You can configure a Queue Storage trigger for an Azure function. Whenever a message

arrives in the queue, it invokes the Azure function. Azure Functions starts executing the

hosted code as soon as it gets invoked. The message in the queue is passed on to the

Azure function as the input payload. The Azure function code processes the message

and passes on the processed message to another Queue Storage. Figure 3-2 illustrates

the use case.

This use case will best fit in an e-commerce application scenario. Whenever a

customer places an order, the order gets added to the Queue Storage as a message. As

soon as an order message gets added in the Queue Storage, the function gets invoked.

Azure Functions processes the order message and sends the processed message to another

Queue Storage. Some other service can pick up this message for further processing.

Figure 3-2.  Azure function triggered by a Queue Storage

Chapter 3 What Are Triggers and Bindings?

48

�Use Case: A scheduled job picks up images for Blob
Storage at a particular time interval and then processes
and stores them back in the Blob Storage
You can configure a timer-based trigger for your Azure function. You can set up

particular time intervals when the timer should invoke the Azure function. Once the

Azure function gets triggered by the timer, it can pick up a Blob from the Blob Storage,

process the Blob, and put the processed Blob back in Azure Blob Storage. Figure 3-3

illustrates the use case.

This use case is best when you need to perform a couple of background activities. For

example, you can use this strategy for image processing systems where a user will upload

an image to process in Blob Storage using a user interface. At particular time intervals in

the day, the Azure function will run. It will pick up the image from Blob Storage, process

it, and put the processed image back in Azure Blob Storage.

�Use Case: An HTTP call invokes an Azure function to
execute some business logic
You can configure an HTTP trigger for an Azure function. Whenever an HTTP request

such as GET, PUT, POST, or DELETE invokes an Azure function, the Azure function

executes the hosted code. The input payload for the HTTP trigger will consist of the data

to process. Azure Functions processes the data and inserts the data into Azure Cosmos

DB. Figure 3-4 illustrates the use case.

Figure 3-3.  Azure function triggered by a timer

Chapter 3 What Are Triggers and Bindings?

49

This scenario best fits where you need to build a data access layer on top of the

database. This data access layer will expose the data from the underlying database using

REST APIs.

�Use Case: An event grid can invoke an Azure function to
send an email with event data
You can configure an event grid that can trigger an Azure function. An event subscriber

such as Azure Service Bus Queue can subscribe to the event grid. Whenever a message

arrives in the Azure Service Bus Queue, it will raise an event and send the message as

event data to an Azure event grid topic. The event grid will invoke the function and send

the message data as input payload. Azure Functions processes the message data and

sends the message data to the concerned back-end team for further processing using an

email sent by Send Grid. Figure 3-5 illustrates the use case.

Figure 3-4.  Azure function triggered by an HTTP trigger

Figure 3-5.  Azure function triggered by event grid

Chapter 3 What Are Triggers and Bindings?

50

�Use Case: RabbitMQ triggers an Azure function that
processes the message sent by RabbitMQ and puts the
processed message in Azure Cosmos DB
You can configure a RabbitMQ trigger for an Azure function. Whenever a message gets

added to the RabbitMQ queue, it will trigger the Azure function and pass on the message

as input payload to the Azure function. Azure Functions processes the message and puts

the processed message in Azure Cosmos DB. Figure 3-6 illustrates the use case. You can

build microservices-based applications using Azure Functions and RabbitMQ with ease.

�Implement Triggers and Bindings for Azure
Functions
Let’s create an Azure function that is invoked whenever a message is inserted into

the Queue Storage. The function will process the queue message and then insert the

processed message to Blob Storage. Here, in this case, you need to create a Queue

Storage trigger that will invoke the Azure function and a Blob Storage output binding that

the Azure function will use to put the processed queue message in the Blob Storage.

As a prerequisite, you should create an Azure storage account. The storage account

should have Blob Storage with the container name processeddata. Azure Functions

processes the queue message and puts it as a Blob in the processeddata container. The

storage account should have a queue named rawdata. Whenever you put a message in

the rawdata queue, it will invoke the Azure function.

Figure 3-7 illustrates the Blob Storage container created as a prerequisite.

Figure 3-6.  Azure function triggered by RabbitMQ

Chapter 3 What Are Triggers and Bindings?

51

Figure 3-8 illustrates the Queue Storage that we should create as a prerequisite.

Now let’s create an Azure function. Go to the Azure portal in your browser. Click

“Create a resource,” as shown in Figure 3-9.

Figure 3-7.  Blob Storage Container for function output binding

Figure 3-8.  Queue Storage for function trigger

Chapter 3 What Are Triggers and Bindings?

52

You will find Function App on the Compute tab. Click Compute and then click

Function App, as in Figure 3-10.

Provide the subscription, resource group, function app name, runtime stack, version,

and region. Click “Review + create,” as shown in Figure 3-11.

Figure 3-9.  Click “Create a resource”

Figure 3-10.  Click Function App

Chapter 3 What Are Triggers and Bindings?

53

Click Create (see Figure 3-12). This action will spin up the Azure function.

Figure 3-11.  Click “Review + create”

Figure 3-12.  Click Create

Chapter 3 What Are Triggers and Bindings?

54

Once the function gets created, go to the function app and click the Functions tab, as

shown in Figure 3-13.

Now let’s add a function. Click Add, as in Figure 3-14.

Figure 3-13.  Click Functions

Figure 3-14.  Click Add

Chapter 3 What Are Triggers and Bindings?

55

Select “Azure Queue Storage trigger,” as shown in Figure 3-15. You need to invoke the

function whenever a message gets added to the queue.

Scroll down and provide a name for the trigger and the storage account queue name

where you will add the messages to trigger the function, as in Figure 3-16. Click New and

provide the storage account where you have created the queue.

Figure 3-15.  Select “Azure Queue Storage trigger”

Chapter 3 What Are Triggers and Bindings?

56

Once the function gets created, click Integration, as shown in Figure 3-17. Here we

can add the output binding for the Blob Storage.

Figure 3-16.  Click Add

Chapter 3 What Are Triggers and Bindings?

57

Click “Add output,” as in Figure 3-18. Here you will add the output binding.

Provide a name for the output parameter used in the function code to access the

Blob Storage. The parameter name specified here should match exactly with the out

parameter in the Run method in the run.csx file. Provide a path for the Blob container.

Here name the Blob file as a randomly generated GUID. The {rand-guid} expression

helps you generate a random GUID for the Blob filename. Provide a storage account

connection name. Click OK as in Figure 3-19.

Figure 3-17.  Click Integration

Figure 3-18.  Click “Add output”

Chapter 3 What Are Triggers and Bindings?

58

Click Code + Test as in Figure 3-20. Here you can add the function logic in the run.csx file.

Figure 3-19.  Create an output binding

Figure 3-20.  Click Code + Test

Chapter 3 What Are Triggers and Bindings?

59

Add the logic shown in Listing 3-1 to the run.csx file. You can see that the out

parameter named outputBlob matches precisely the name of the output Blob parameter

name specified while creating the output binding, as shown earlier in Figure 3-19.

Listing 3-1.  Function Code

using System;

public static void Run(string myQueueItem, out string outputBlob, ILogger log)

{

 �log.LogInformation($"C# Queue trigger function processed:

{myQueueItem}");

 //Process Message. We are just adding a "Processed Text" to the message

 myQueueItem = myQueueItem + "-Processed !!!!";

 //Storing Queue Message to Blob Storage

 outputBlob = myQueueItem;

}

Make sure you are adding this code to the run.csx file as in Figure 3-21 and save the

file.

Now let’s test the Azure function. Navigate to the queue in the storage account and

click “Add message,” as shown in Figure 3-22.

Figure 3-21.  Add the function logic to Code + Test

Chapter 3 What Are Triggers and Bindings?

60

Add a message in the queue, as in Figure 3-23.

Go to the Azure Blob container in the storage account. You can find the processed

message here, as shown in Figure 3-24. You can download the file and verify the text in

the file.

Figure 3-23.  Provide the message text and click OK

Figure 3-22.  Click “Add message” in the queue storage

Chapter 3 What Are Triggers and Bindings?

61

�Summary
In this chapter, you learned the basics of triggers and bindings. You explored the

different triggers and bindings supported by functions. We then discussed a few of the

use cases for triggers and bindings. You learned how to create and enable triggers and

bindings for an Azure function using the Azure portal.

The following are the key takeaways from this chapter:

•	 Triggers define how the functions execute. They wake up functions

from their idle state and make them execute.

•	 You can configure a single trigger for an Azure function.

•	 You can use bindings to facilitate data exchange between these

services and functions.

•	 You can have multiple bindings configured for an Azure function.

•	 You do not need to write any code explicitly to implement triggers

and bindings. You need to write declarative configurations to enable

triggers and bindings and facilitate interaction with functions and

other services.

•	 The supported triggers and bindings depend on the runtime version

of functions. If none of the supported bindings matches your

requirements, you can create your own custom binding using .NET

and use it anywhere per your needs.

Figure 3-24.  Blob added in the Blob container

Chapter 3 What Are Triggers and Bindings?

63
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_4

CHAPTER 4

OTP Mailer with Queue
Storage Trigger and
SendGrid Binding
You may encounter scenarios where you need to invoke Azure Functions whenever a

Queue Storage gets a message. Azure Functions will pick the message from the Queue

Storage and process it. You may also have scenarios where you have to execute an Azure

function’s business logic and then send an email from an Azure function. You can use

a Queue Storage trigger to invoke an Azure function and a SendGrid output binding to

send an email from Azure Functions. You can also use the Microsoft Graph API instead

of SendGrid to send mails using Azure Functions.

In the previous chapter, you learned all about the essential concepts of triggers

and bindings. You explored different types of triggers and bindings available for Azure

Functions. Let’s now explore how to implement a Queue Storage trigger and a SendGrid

binding for Azure Functions and build a one-time password (OTP) mailer using

SendGrid.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Queue Storage triggers and

SendGrid bindings:

•	 Getting started with Queue Storage triggers and use cases

•	 Building a sample application using a Queue Storage trigger

•	 Getting started with a SendGrid output binding and use cases

https://doi.org/10.1007/978-1-4842-7122-3_4#DOI

64

•	 Building a sample application using a SendGrid output binding

•	 Creating an OTP mailer using a Queue Storage trigger and a

SendGrid output binding

�Objectives
After studying this chapter, you will be able to do the following:

•	 Implement a Queue Storage trigger for Azure Functions

•	 Implement a SendGrid output binding for Azure Functions

�Getting Started with a Queue Storage Trigger and
Use Cases
Queue Storage provides an excellent mechanism to decouple different application

components and make your application architecture loosely coupled. Each decoupled

application component can exchange data by sending messages to Queue Storage and

receiving messages from Queue Storage. You can break your application code into

smaller chunks and host them in functions, and each of these smaller chunks of code

running inside a function performs a specific task. These functions can communicate

among themselves using Queue Storage. An Azure function can process data and send

it to Queue Storage. Queue Storage can then invoke another Azure function that can

pick up the Queue Storage data and process it. The Queue Storage trigger can invoke an

Azure function whenever it gets a message and passes on the Azure function message.

The following are a few of the example scenarios where you can use a Queue Storage

trigger:

•	 The customer can place an order for a purchase using the user

interface. The user interface invokes a business service that places

the order as a Queue Storage message. The Queue Storage trigger

invokes an Azure function that picks the order and validates the stock

availability for the item that the customer has ordered.

•	 A customer can provide feedback for the service used in a user

interface. The user interface invokes a service that puts the feedback

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

65

in Queue Storage. An Azure function gets triggered by Queue Storage,

analyzes the customer feedback, and responds to customers with

corrective actions if needed.

•	 An Internet of Things (IoT) application can monitor a factory floor’s

temperature and ingest the temperature into Queue Storage in an

event the temperature rises beyond a prescribed limit. Queue Storage

will then invoke an Azure function to analyze the temperature data

and invoke automation or take corrective action to cool down the

factory floor.

�Build a Sample Application Using a Queue
Storage Trigger
Let’s implement a Queue Storage trigger for an Azure function. As a prerequisite, let’s

create a storage account and a Queue Storage to add a message. As soon as a message

gets added to the queue, it will trigger the function.

Go to the Azure portal and click “Create a resource,” as shown in Figure 4-1.

Search for storage account and click the search result “Storage account,” as shown in

Figure 4-2.

Figure 4-1.  Create a resource

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

66

Click Create, as shown in Figure 4-3.

Select your Azure subscription, the resource group, and the location where you need

to create the storage account. Provide a name for the storage account. Click “Review +

create,” as shown in Figure 4-4.

Figure 4-2.  Select “Storage account”

Figure 4-3.  Click Create

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

67

A validation check will be done for the configuration values provided for the storage

account, and if the check succeeds, you will get a message on the screen that the

validation passed. Once the validation passes, click Create, as shown in Figure 4-5. This

action will create the storage account.

Figure 4-4.  Click “Review + create”

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

68

Go to the storage account once it gets created and then search for Queue in the

search box. Click Queues, as shown in Figure 4-6.

Figure 4-5.  Click Create

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

69

To create a queue in the storage account, click + Queue, as shown in Figure 4-7.

Provide a name for the queue and click OK, as shown in Figure 4-8.

Figure 4-6.  Click Queues

Figure 4-7.  Add a queue

Figure 4-8.  Click OK

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

70

Now let’s create an Azure function with a queue trigger enabled. Open Visual Studio

and click “Create a new project,” as shown in Figure 4-9.

Select the Azure Functions template. Click Next, as shown in Figure 4-10.

Figure 4-9.  Create a new project

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

71

Provide a name for the project and click Create, as shown in Figure 4-11.

Figure 4-10.  Select the Azure Functions template

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

72

Select “Queue trigger” and provide the connection string name for the queue and

the queue’s name that will trigger the function. Provide demoforqueuestorage for the

name of the queue that you created earlier in this chapter. You need to add a key for

this connection string in the local.settings.json file in the solution and provide the

connection string for the key in the local.settings.json file. Click Create. A solution

with the queue-triggered function gets created. See Figure 4-12.

Figure 4-11.  Provide a project name and click Create

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

73

Listing 4-1 shows the code for the Function1.cs file. In the Run method, a method

parameter called myQueueItem gets created. The myQueueItem parameter is decorated

with the QueueTrigger attribute. The QueueTrigger attribute takes the storage account’s

queue name that can trigger this function and the connection string’s name that is in the

local.settings.json file.

Listing 4-1.  Function1.cs Code

using System;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Logging;

namespace Function_QueueTriggerDemo

{

 public static class Function1

 {

Figure 4-12.  Select “Queue trigger”

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

74

 [FunctionName("Function1")]

 public static void Run([QueueTrigger("demoqueue",

 Connection = "ConnectToQueue")]string myQueueItem,

 ILogger log)

 {

 �log.LogInformation($"C# Queue trigger function processed:

{myQueueItem}");

 }

 }

}

Now let’s add the connection string key to the local.settings.json file. Go to the

storage account that you created in the Azure portal and click “Access keys,” as shown in

Figure 4-13.

Click “Show keys.” Copy the connection string, as shown in Figure 4-14.

Figure 4-13.  Click “Access keys”

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

75

Go back to the Azure function solution in Visual Studio and open the local.

settings.json file, as shown in Listing 4-2. Add the key for the connection string.

Replace the placeholder [value] with the connection string value that you copied from

the Azure portal.

Listing 4-2.  Local.settings.json Code

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "ConnectToQueue": "[value]"

 }

}

Figure 4-14.  Copy the connection string

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

76

Now run the solution. Once the function starts running, go to the Azure Queue

Storage and add a queue message to trigger the function. Go to Queue Storage in the

Azure portal and click “+ Add message,” as shown in Figure 4-15.

Provide some message and click OK. You can configure when the message expires

in the queue. In this case, the message will expire in seven days. You can set the “Expires

in” value to configure the message expiration, as shown in Figure 4-16.

Figure 4-16.  Click OK

Figure 4-15.  Add a message to the queue

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

77

The Azure function gets triggered, and you can see that the message gets logged in

the debug console of Visual Studio, as shown in Figure 4-17.

�Getting Started with a SendGrid Output Binding and
Use Cases
You may have a scenario where the function will process the business logic and then

send the processing output in an email to the intended recipients. To address this

requirement, you can use SendGrid as an output binding. You do not need to implement

much code to send an email from an Azure function. You just need to declaratively

configure SendGrid as an output binding and send emails from the Azure Functions

service. SendGrid is a third-party email delivery service that is available as an Azure

service. You can spin up a SendGrid account in the Azure portal with a few clicks and

start using it.

The following are a few of the example scenarios where you can use SendGrid:

•	 In the case of an e-commerce website, an Azure function can send an

email to the customer once it processes the order.

Figure 4-17.  Function execution output

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

78

•	 In the case of an IoT application monitoring the factory floor’s

temperature, an Azure function can check for an abnormal

temperature and send an email to the concerned team to take

corrective action.

•	 In a reporting application, an Azure function can process a report

and send the report data in an email.

•	 In the case of a customer feedback management system, the Azure

function analyzes the customer feedback. It sends an email with the

necessary corrective steps to the back-end team to take action.

�Build a Sample Application Using the SendGrid
Output Binding
Let’s add a SendGrid output binding to the Azure function you developed earlier. You

have already created a Queue Storage that will trigger the Azure function. Now let’s

create a SendGrid service in the Azure portal. Go to the Azure portal and click “Create a

resource,” as shown in Figure 4-18.

Search for sendgrid and click the search result for SendGrid, as shown in Figure 4-19.

Figure 4-18.  Create a resource

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

79

Click Create, as shown in Figure 4-20.

Figure 4-19.  Select SendGrid

Figure 4-20.  Click Create

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

80

Provide the subscription details, resource group, location, and account details to

access the SendGrid account, as shown in Figure 4-21.

Provide your first name, last name, company email, company name, and website.

Click “Review + create,” as shown in Figure 4-22.

Figure 4-21.  Provide the basic details

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

81

Click Create, as shown in Figure 4-23.

Figure 4-22.  Provide the contact details

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

82

Once the SendGrid service gets created, navigate to the service in the Azure portal.

You need to create a sender identity that you can send emails from using the SendGrid

account. Click Sender Identity, as shown in Figure 4-24. You will be navigated to the

SendGrid portal.

Figure 4-23.  Click Create

Figure 4-24.  Click Sender Identity

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

83

Click Create a Single Sender, as shown in Figure 4-25.

Provide your information for the email details. SendGrid uses these details to send

emails. Click Create, as shown in Figure 4-26.

Figure 4-25.  Create a sender

Figure 4-26.  Provide the sender details

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

84

You will get an email for verification in the email address you specified while creating

a sender identity. Verify the email. Once the sender identity gets verified, go to the

SendGrid service in the Azure portal and click Manage, as shown in Figure 4-27.

You will get navigated to the SendGrid portal. Click API Keys, as shown in Figure 4-28.

Create an API key. Copy the API key that you created. You will use this in your Azure

function code. Make sure you select Full Access for API Key Permission, as shown in

Figure 4-29. This will help you perform all the necessary HTTP actions such as GET,

PATCH, PUT, DELETE, and POST for the SendGrid endpoint.

Figure 4-28.  Click API Keys

Figure 4-27.  Click Manage

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

85

Now let’s open Visual Studio and the Azure function project you created earlier. Add

the following NuGet package to the function project:

•	 Microsoft.Azure.WebJobs.Extensions.SendGrid

Modify the Function1.cs code as illustrated in Listing 4-3. You are adding an

output binding for SendGrid using the SendGrid attribute for the method

parameter. The SendGrid attribute takes the name of the API key settings in the

local.settings.json file.

Listing 4-3.  Function1.cs Code

using System;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Logging;

using SendGrid.Helpers.Mail;

Figure 4-29.  Create an API key

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

86

namespace Function_QueueTriggerDemo

{

 public static class Function1

 {

 [FunctionName("Function1")]

 public static void Run(

 [QueueTrigger("demoqueue", Connection = "ConnectToQueue")]

 string myQueueItem,

 [SendGrid(ApiKey = "SendGridConnection")]

 out SendGridMessage message,

 ILogger log)

 {

 message = new SendGridMessage();

 //myQueueItem should have TO email address

 //We are adding TO for the email

 message.AddTo(myQueueItem);

 //Mail Body

 message.AddContent("text/html", "This is Demo Mail");

 //From Mail ID. Shuld be exactly same as

 //that in Sender Identity of Send Grid

 message.SetFrom(new EmailAddress("abc@mycompany.com"));

 //Subject for the mail

 message.SetSubject("Demo Mail");

 log.LogInformation($"Email Triggered to : {myQueueItem}");

 }

 }

}

Modify the local.settings.json file as shown in Listing 4-4. You need to add the

key name for SendGrid. Replace [KeyValue] with the API key that you created in the

SendGrid portal earlier. Replace [Value] with a Queue Storage connection string.

Listing 4-4.  Local.settings.json Code

{

 "IsEncrypted": false,

 "Values": {

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

87

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "ConnectToQueue": "[Value]",

 "SendGridConnection": "[KeyValue]"

 }

}

Now run the Azure function in Visual Studio. Whenever you add any message to

the Queue Storage, the Azure function gets triggered, and a message is sent to the email

address specified in the queue message. Make sure you add an email address in the

message to the queue, as shown in Figure 4-30.

The Azure function gets triggered, and an email gets delivered to the email address

specified in the queue message, as shown in Figure 4-31.

Figure 4-30.  Add a message to the queue

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

88

�Create an OTP Mailer Using a Queue Storage Trigger
and SendGrid Output Binding
Now let’s modify the Azure function code to send an OTP. You need to generate a

random number and send it in the message body. Whenever a message with an email

address as a value gets added in the queue, the Azure function gets triggered, generates

a random number, and sends it in the email body to the email address specified in the

queue message. Replace the code in Function1.cs with the code shown in Listing 4-5.

Listing 4-5.  Function1.cs Code

using System;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Logging;

using SendGrid.Helpers.Mail;

Figure 4-31.  Function execution output

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

89

namespace Function_QueueTriggerDemo

{

 public static class Function1

 {

 [FunctionName("Function1")]

 public static void Run(

 [QueueTrigger("demoqueue", Connection = "ConnectToQueue")]

 string myQueueItem,

 [SendGrid(ApiKey = "SendGridConnection")]

 out SendGridMessage message,

 ILogger log)

 {

 //Generate OTP

 Random random = new Random();

 int num = random.Next(10000);

 message = new SendGridMessage();

 //myQueueItem should have TO email address

 //We are adding TO for the mail

 message.AddTo(myQueueItem);

 //Mail Body with random One Time Password (OTP) generated

 message.AddContent("text/html", "One Time Password for your

 transaction : " + num.ToString());

 //From Mail ID. Shuld be exactly same as that in

 //Sender Identity of Send Grid

 message.SetFrom(new EmailAddress("abc.mycompany.com"));

 //Subject for the mail

 message.SetSubject("OTP Mail - Valid for 10 minutes");

 log.LogInformation($"Email Triggered to : {myQueueItem}");

 }

 }

}

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

90

�Summary
In this chapter, you learned how to work with a Queue Storage trigger and SendGrid

output binding using Visual Studio. You then used these concepts to build an OTP mailer

Azure function that gets triggered whenever you add a message to the Queue Storage

and send an email using the SendGrid output binding.

The following are the key takeaways from this chapter:

•	 You can trigger an Azure function using a Queue Storage trigger.

The function gets triggered whenever a message gets added to the

Queue Storage.

•	 You can send an email from an Azure function using the SendGrid

output binding.

•	 You can declaratively configure a Queue Storage trigger and the

SendGrid output binding without having to write much code.

•	 Visual Studio provides a template to work with a Queue Storage

trigger.

•	 You can enable only one SendGrid account per Azure subscription.

You need to enable Azure SendGrid using only a company email

address. A personal mail address will not work when creating a

SendGrid service in the Azure environment and integrating it as a

binding in Azure function.

•	 The free tier for SendGrid is not available in Azure, so you must use

a pay-as-you-go subscription instead of a trial subscription or a

subscription that offers free monthly credits.

Chapter 4 OTP Mailer with Queue Storage Trigger and SendGrid Binding

91
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_5

CHAPTER 5

Build a Report Generator
with a Timer Trigger and
Blob Storage Bindings
You may have had to run certain services of your application at uniform time intervals

for a defined frequency. Often such service executions do not take much time to

complete. So, allocating dedicated resources for such applications will result in

inefficient use of provisioned resources, resulting in higher costs.

Using a timer trigger, you can develop such scheduled-based tasks to trigger Azure

functions to avoid providing dedicated infrastructure resources. Along with invoking

such services for a particular frequency at a uniform time interval, you may also need

to store the insights or data gathered by the service in persistent storage. You can

achieve that with a Blob Storage binding in Azure Functions to write into Azure Blob

Storage.

In the previous chapter, you learned all about the essential concepts and the use

cases of a queued-triggered Azure function and SendGrid output binding by building

a one-time password (OTP) mailer. Let’s explore how to implement a timer trigger

and Blob Storage bindings for the Azure Functions service by building a report

generator.

https://doi.org/10.1007/978-1-4842-7122-3_5#DOI

92

�Structure of the Chapter
This chapter will explore the following aspects of timer triggers and Blob Storage input

and output bindings:

•	 Getting started with timer triggers and use cases

•	 Building a sample application using a timer trigger

•	 Getting started with Blob Storage bindings

•	 Building a sample application using a Blob Storage binding

•	 Creating a report generator using Blob Storage input and output

bindings

�Objectives
After studying this chapter, you will be able to do the following:

•	 Implement a timer trigger for Azure Functions

•	 Implement Blob Storage input and output bindings for Azure

Functions

�Getting Started with Timer Triggers and Use Cases
Using a timer trigger is an excellent way to build a scheduling application that executes

specific tasks at uniform intervals. You can use timer triggers to build cost-effective cron

jobs in Azure that execute for a short time as you pay only for your Azure function’s

execution time.

A word of caution here: you should not consider using Azure Functions to run

long-running cron jobs while you are using a Consumption Plan because the maximum

timeout duration of a function app is 10 minutes. But with a Premium Plan, you can

overcome the timeout limits faced with the Consumption Plan as the default timeout is

30 minutes, and theoretically it can be configured to be unlimited. If you are hosting your

function in a dedicated App Service Plan or App Service Environment, you can configure

the trigger time depending on your requirements. Alternatively, if you have an existing

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

93

App Service Plan, you can write a web job that is configured as run on a schedule to

execute long-running cron jobs.

Unlike other trigger types, the timer trigger comes out of the box along with an HTTP

trigger in Microsoft.Azure.WebJobs.Extensions version 2.x and newer.

The following are a few use cases where you can use a timer trigger:

•	 The customer can use a timer-triggered function to work as a

schedule-based report generator to gather data from data sources,

build a report depending on the business requirements, and later

save the report in persistent storage like Azure Blob Storage or an

AWS S3 bucket for further use.

•	 The customer may want to send weekly newsletters to their end

users. There can be a mailing list containing all the end users who are

recipients of the newsletter. The timer-triggered function solves this

business requirement well.

•	 The customer may have monthly or yearly membership plans for its

end user and may want to revoke the membership status of all the

users who didn’t renew their plans at the end of each month or year.

You can use a timer-triggered function to deactivate or delete all such

users’ records depending on the business requirements.

A timer-triggered function uses the NCrontab expression to define the schedule

expression. NCrontab expressions are similar to cron expressions. The NCrontab

expressions have an additional sixth field to define the seconds in the schedule

expression, making them different from cron expressions.

Note A zure Functions does not support five cron expression fields. Timespan is
supported, but only while you are running your functions inside an App Service
Plan.

This is the structure of a NCrontab expression:

{seconds} {minute} {hour} {day} {month} {day-of-week}

Each of the fields in an NCrontab expression can have one of the types shown in

Table 5-1.

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

94

�Build a Sample Application Using a Timer Trigger
You will be creating a timer-triggered Azure function in the Azure portal with the portal

editor’s help in this section.

Go to the Azure portal and search for function app in the search bar. Click Function

App, as shown in Figure 5-1.

Now click Create to create a new function app, as shown in Figure 5-2.

Table 5-1.  Different Types of NCrontab Expressions with Examples

Type Example When Trigger

A specific value 0 2 * * * * Once every hour of the day at minute 2 of each hour

All values (*) 0 * 2 * * * At every minute in the hour beginning at hour 2

A range operator (-) 1-7 * * * * * 7 times a minute: at 1 through 7 seconds

during every minute of every hour of each day

An interval value

operator (/)

0 */5 * * * * 12 times an hour: at second 0 of every

5th minute of every hour of each day

A set of values

operator (,)

1,5,10 * * * * * Three times a minute: at seconds 1, 5,

and 10 during every minute of every hour of each day

Figure 5-1.  Click Function App

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

95

Fill in all the details required for creating your function app like the resource group,

function app name, region, and runtime stack, to name a few, as shown in Figure 5-3.

Figure 5-2.  Create a function app

Figure 5-3.  Provide the necessary configuration details of the function app

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

96

Once you have filled in all the required fields, click Next : Hosting.

You will have to fill in the storage account name for your function app, your

operating system, and, finally, the plan type. I have created a new storage account for

this function app. The operating system selected is Windows for this function app. Since

you want your timer-triggered function to be serverless, let’s go with the Consumption

Plan in this example.

Once you have filled in all these details, click Next : Monitoring, as shown in Figure 5-4.

You will enable Application Insights for your function app in the Monitoring section

and create a new insight for the function app. You enable Application Insights for the

function app because it helps you view your functions’ log stream data.

Application Insights also helps you gather telemetry data to process and figure out

any anomalies in your function execution. We will discuss it briefly Chapter 10.

Once you have enabled Application Insights and selected one of the existing insights

or created a new one for the function app, click Next : Tags, as shown in Figure 5-5.

Figure 5-4.  Provide the hosting details

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

97

Now, you will be asked to assign tags for the function app. This step is optional. It is

a best practice to have tags assigned for all your resources. It helps in cost management

and in the logical grouping of resources. Once you have filled in the tags along with their

values, click “Next : Review + create,” as shown in Figure 5-6.

Figure 5-5.  Enable Application Insights

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

98

Now you will see a screen with a summary of all the details you filled in to create the

function app, and validation will be done to check whether all the details are valid. Once

the validation process is completed and is successful, you need to click Create, as shown

in Figure 5-7.

Figure 5-6.  Provide the tag details

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

99

While your function app is being deployed, you will be redirected to a screen like

the one shown in Figure 5-8. Once the deployment of all your function app resources is

completed, you will see an update, as highlighted in Figure 5-8. Click “Go to resource” to

navigate to the function app.

Figure 5-7.  Click Create

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

100

Now you will be redirected to the Functions screen. Click Functions and then click

Add to create a new Azure function, as shown in Figure 5-9.

Now let’s select “Develop in portal” as the development environment, select “Timer

trigger” as the function template, and click Add, as shown in Figure 5-10.

Figure 5-8.  Click “Go to resource”

Figure 5-9.  Click Add

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

101

Azure will generate a timer-triggered Azure function called TimerTrigger1, as shown

in Figure 5-11. By default, the function will be enabled. This function will consist of these

three files:

•	 run.csx

•	 function.json

•	 readme.md

Figure 5-10.  Select “Timer trigger” and click Add

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

102

run.csx is a C# script that contains the business logic of your Azure function, while

function.json has all the configuration details of your function’s trigger, binding, and

other configuration settings. readme.md contains a small description about what this

function does.

Now click Code + Test, as shown in Figure 5-11, to view the run.csx code; refer to

Listing 5-1 for the code present in the run.csx file.

The boilerplate code generated by Azure for your timer-triggered function currently

writes a message into the log every five minutes.

Listing 5-1.  run.csx Code

using System;

public static void Run(TimerInfo myTimer, ILogger log)

{

 �log.LogInformation($"C# Timer trigger function executed at:

{DateTime.Now}");

}

The function and the trigger type’s schedule expression and other details are

mentioned in the function.json file. Listing 5-2 shows the content of function.json.

Figure 5-11.  Select Code + Test

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

103

Listing 5-2.  function.json Code

{

 "bindings": [

 {

 "name": "myTimer",

 "type": "timerTrigger",

 "direction": "in",

 "schedule": "0 */5 * * * *"

 }

]

}

You can modify the function name along with the schedule expression in the

function.json file. Alternatively, you can do the same by clicking Integration in the

Developer section of your function screen and then clicking the trigger, as shown in

Figure 5-12.

Now, you will see a screen with all the function details as mentioned in function.

json. You can modify the name of your function by modifying the timestamp modifier

name and do the same with the schedule expression by modifying the schedule value, as

shown in Figure 5-13.

Figure 5-12.  Click Integration

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

104

Now that you have created and understand your timer-triggered Azure function

and looked into ways to customize it, let’s see how it works. Since it works on a schedule

and logs a message containing the time of execution when it executes, you will see it in

the log stream. To view the log stream, you will have to click Monitor in the Developer

section. Then click Logs to see the messages logged by your function after it executes, as

shown in Figure 5-14.

Figure 5-14.  View logs

Figure 5-13.  Modifying function settings

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

105

Note W hile deploying timer-triggered functions to the production environment,
make sure the runOnStartup property is set to false. If set to true, your
function will be invoked every time it’s scaled out or whenever the function app
restarts due to function changes.

You can also see the number function invocation along with their execution time

and status, i.e., success or failure, in the Monitor section of your function screen. You

can view these details by going to the Invocation tab instead of the Logs tab, as shown in

Figure 5-15.

To learn more about timer-triggered functions, we recommend you visit https://

docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer.

Figure 5-15.  View the function invocation details

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer

106

�Getting Started with Blob Storage Bindings
and Use Cases
You may have come across scenarios where the function needs to store the processed

data in a persistent storage after execution or needs some data to process a request and

return a response. To address such requirements, you can use Blob Storage bindings.

Blob Storage bindings provide a declarative way of connecting your functions to Azure

Blob Storage and performing various operations on it. An Azure function supports both

input and output bindings for Azure Blob Storage. These bindings help you focus more

on solving business problems instead of focusing on configuring the boilerplate code to

set up the SDKs to interact with Blob Storage.

The following are a few example scenarios where you can Blob Storage bindings:

•	 In a reporting application, Azure Functions processes the data from

different data sources at a defined time each day and then stores it in

Blob Storage for further reference by other users.

•	 In the case of a serverless API, an HTTP-triggered Azure function

may need to return files or its content whenever required as per the

business requirements. You can use a Blob Storage input binding to

get a file from Blob Storage to send it back to the user as a response.

•	 In the case of a banking system, an Azure function can generate an

account statement every month and put it in Blob Storage using the

output binding and then also use a Blob Storage trigger and SendGrid

output binding to send the generated account statement to the end

user over email.

Note W hile using the in-portal editor, you cannot use attribute-based bindings.
You will have to define the properties of your triggers and bindings in the
function.json file. Alternatively, you can also define and modify them in the
Integration section of Azure Functions in the portal.

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

107

�Build a Sample Function Using a Blob Storage
Binding
You will be creating a timer-triggered Azure Function with a Blob Storage output binding

in the Azure portal with the portal editor’s help in this section. You will integrate the

Blob Storage binding with the timer-triggered function that you created in the previous

section. You are going to use a Blob Storage output binding to create a new file in the

container every time your timer-triggered function executes, along with writing the

message you used to log earlier inside this file.

Let’s go to the timer-triggered function in the portal and click the Integration option

available in the Developer section of the screen. You will see a screen similar to the one

shown in Figure 5-16.

Since you have already defined the trigger type while creating the function, the

trigger is updated here as Timer. As you don’t have any input and output bindings

configured for this function as of now, you are not able to see “No inputs defined” and

“No outputs defined” on the screen.

Now you will need to click Add Output to add an output binding for this function.

Once you click, you should see a screen similar to the one shown in Figure 5-17. You

have to select Azure Blob Storage as the binding type, and then you will need to name

the Blob parameter name. Then define the path of the container when you want to create

a file every time your function executes along with the name.

Figure 5-16.  View the Integration options for the function

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

108

In your case, the container name is outcontainer, and the filename is defined

as {rand-guid}.txt. The {rand-guid} is a binding expression that creates a unique

GUID. You can also use the {DateTime} binding expression to create a file with the name

as the value of DateTime.UtcNow. Finally, you select the storage account connection. This

is the name of the app setting that contains the storage connection string to use for this

binding. By default, it points to the storage account that you created while creating the

function app. Alternatively, you can map it to a different storage account too, depending

on your requirements. But you need to make sure that you configure the connection

string of a general-purpose storage account and not a Blob Storage account.

By default, you have only two containers inside the storage account that you created

while creating the function app, as shown in Figure 5-18. You can see these containers

inside the storage account by going to the Storage Explorer and then by clicking the Blob

containers.

Figure 5-17.  Add a Blob Storage output binding

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

109

As you can see from Figure 5-18, you don’t have any container called outcontainer

that you have passed in the path of your output binding as of now. In such cases, the

function creates an outcontainer on the fly in the storage account while executing to

store the file.

Now that you have configured the output binding for your timer-triggered function

app in the Integration window, let’s take a look at your function.json file. You will

see that a new code snippet has been added to your function.json file, as shown in

Listing 5-3. Now it contains all the attributes required to add a Blob Storage output

binding to your function. Any changes made in the Integration window will be reflected

in the function.json file of your timer-triggered function.

Listing 5-3.  Updated function.json Code

{

 "bindings": [

 {

 "name": "myTimer",

 "type": "timerTrigger",

 "direction": "in",

 "schedule": "0 */5 * * * *"

Figure 5-18.  View the existing Blob containers

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

110

 },

 {

 "name": "outputBlob",

 "direction": "out",

 "type": "blob",

 "path": "outcontainer/{rand-guid}.txt",

 "connection": "AzureWebJobsStorage"

 }

]

}

In the code shown in Listing 5-3, you can see that the type is defined as blob and the

direction as out. This indicates this is for a Blob Storage output binding. The value of the

connection is the name of the application setting that contains the storage connection

value. The name represents the Blob in the function code.

Now you need make some changes in your run.csx file to add this output binding in

your timer-triggered function, as shown in Listing 5-4.

Listing 5-4.  Modified run.csx

public static void Run(TimerInfo myTimer, ILogger log, TextWriter

outputBlob)

{

 �string message= $"C# Timer trigger function executed at:

{DateTime.Now}";

 try{

 outputBlob.Write(message);

 log.LogInformation("Blob created successfully");

 }

 catch(Exception ex){

 log.LogInformation("Blob creation failed");

 }

}

In Listing 5-4, you add a parameter of the TextWriter type with the name defined in

the function.json file of the timer-triggered function. You can bind it to different types

such as string, Byte[], stream, and a few more. After that, you define a variable called

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

111

message that has a string value along with the date and time when the function execution

takes place. Next, you use the write method to write the value of the message variable

inside a new text file stored in your outcontainer, as shown in Figure 5-19.

You wrap the code snippet within a try-catch block to handle any errors. If

everything works well, you will see “Blob created successfully” in the log stream; if not,

the logged message will be “Blob creation failed.” Now this function will create a unique

text file with the value of the message variable every five minutes until the function is

stopped or disabled.

You can also log additional information as well as store the logs in persistent storage

to investigate any issues that result in failed function execution, but this is currently out

of the scope of this chapter. We will discuss the exception handling mechanism for your

function in Chapter 10.

To learn more about Blob Storage input and output bindings, we recommend you

look at https://docs.microsoft.com/en-us/azure/azure-functions/functions-

bindings-storage-blob.

Figure 5-19.  View the newly created file in the outcontainer

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob

112

�Create a Report Generator Using a Blob Storage
Binding and Timer Trigger
In the previous sections of this chapter, you learned to build Azure functions using a

timer trigger and Blob Storage output binding with an in-portal editor. In this section,

you will create a report generator using a Blob Storage output binding and a timer-

triggered Azure function in Visual Studio 2019. The primary objective of this report

generator will be to fetch data from the database and create a report file that contains

all the data from the data present at the time of execution in JSON format. You can

customize this further depending on the business requirements.

Let’s start building it using Visual Studio 2019. Open Visual Studio 2019 and click

“Create a new project,” as shown in Figure 5-20.

Now, you need to select the Azure Functions template for your project, as shown

in Figure 5-21. You won’t be able to see the Azure Functions template if you haven’t

installed the Azure development workload. You can find the instructions to install the

Azure development workload using the Visual Studio installer in Chapter 2.

Figure 5-20.  Create a new project

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

113

Provide a name for the project and select the source location for the project, as

shown in Figure 5-22.

Figure 5-22.  Provide a project name and click Create

Figure 5-21.  Select the Azure Functions template

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

114

Select “Timer trigger,” provide a cron expression in the schedule, and finally select

the storage account as the storage emulator. The cron expression defined in this step will

be the schedule expression for your timer-triggered Azure function. We have selected the

storage account as a storage emulator because we want to work in the local environment,

but you can always modify the storage account connection. See Figure 5-23.

Once you click Create, Visual Studio will generate a few files with some boilerplate

code with a timer-triggered function named Function1, as shown in Figure 5-24. We

discussed each of these files briefly in Chapter 2.

Figure 5-23.  Select “Timer trigger,” configure the storage account, and schedule the
expression

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

115

By default, the function will have code similar to Listing 5-5. The functionality of

this function is to run every five minutes and log a message with the date and time of

execution.

Listing 5-5.  Boilerplate Timer-Triggered Code Generated by Visual Studio

public static class Function1

 {

 [FunctionName("Function1")]

 �public static void Run([TimerTrigger("0 */5 * * * *")]TimerInfo

myTimer, ILogger log)

 {

 �log.LogInformation($"C# Timer trigger function executed at:

{DateTime.Now}");

 }

 }

You are using an attribute-based declaration of triggers and bindings in this function.

While using the in-portal editor, you define it in the function.json file; otherwise, you

have to use the Integration pane to define or modify the triggers and bindings of your

functions. Here, the TimerTrigger attribute’s constructor takes a cron expression.

To enable your function to access a SQL Server database, you need to install the

System.Data.SqlClient NuGet package in your function project. You can do this using

the NuGet package manager in Visual Studio as well as by typing the following command

in the Package Manager Console:

Figure 5-24.  Files generated by Visual Studio for your function

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

116

Install-Package System.Data.SqlClient -Version 4.8.2

Now you will create a POCO class representing the table. For the purpose of this

example, you are going to access a table consisting of the details of all the authors of a

publishing house. Refer to Listing 5-6 for the POCO class representing the authors table.

Listing 5-6.  POCO Class Representing Authors Table

public class Author

{

 public string author_id { get; set; }

 public string first_name { get; set; }

 public string last_name { get; set; }

 public string phone { get; set; }

}

Once you have created the Author class, you will use ADO.NET code to get the

data from the database and store it in a list of authors, as shown in Listing 5-7. You can

also use Entity Framework Core or any other ORMs like Dapper to interact with the

database. But before you jump into the code to get the data from the authors table, you

need to know where to store the connection string of your database. You can keep the

connection string inside the local.settings.json file as a key-value pair and later fetch

it in your function; or, you can hard-code the connection string in the function code itself

while creating the connection object. The latter is not the recommended way to do it.

You will learn how to manage secrets in function apps in Chapter 10.

Listing 5-7.  Store the Connection String Inside local.settings.json

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "DBCon": "your-connectionString"

 }

}

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

117

In Listing 5-7, you created a key-value pair of DBCon inside the values of your local.

settings.json file. The value of DBCon is to be replaced by the connection string of your

database. Once you have added the connection string value in the local.settings.json file,

you can now fetch it using the GetEnvironmentVariable method, as shown in Listing 5-8.

Listing 5-8.  Get the Data from the Authors Table and Store It in a List of Authors

List<Author> authors = new List<Author>();

string connectionString = Environment.GetEnvironmentVariable("BookStoresDB");

using (SqlConnection myConnection = new SqlConnection(connectionString))

{

 string oString = "Select * from author";

 SqlCommand oCmd = new SqlCommand(oString, myConnection);

 myConnection.Open();

 using (SqlDataReader oReader = oCmd.ExecuteReader())

 {

 while (oReader.Read())

 {

 Author author = new Author();

 author.author_id = oReader["author_id"].ToString();

 author.first_name = oReader["first_name"].ToString();

 author.last_name = oReader["last_name"].ToString();

 author.phone = oReader["phone"].ToString();

 authors.Add(author);

 }

 myConnection.Close();

 }

}

In the code snippet in Listing 5-8, you create a list of authors called authors.

Then you fetch the connection string from local.setting.json and store it in the

connectionString variable using the GetEnvironment method class. Then you use a

short piece of ADO.NET code to get the value of all the authors present in the table and

then store all the records fetched from the authors table in your Authors list. You need to

add the code snippet to the Run method of your function.

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

118

Now that we covered the code to fetch and store data from the authors table in the

database to a list of authors, let’s convert the authors list into a JSON string by using the

Serialize method of the JsonSerializer class, as shown in Listing 5-9. Once you add

the code snippet shown in Listing 5-9 to serialize the authors list object into a JSON

string, pass this JSON string inside the LogInformation method and run your function to

check whether you are able to get the data and serialize the list object into a JSON string.

Listing 5-9.  Display the Serialized Authors List As a JSON String in the Azure

Functions Core Tools Logs Window

var jsonData = JsonSerializer.Serialize<List<Author>>(authors);

log.LogInformation($"{jsonData}");

You should see the JSON string in the logs of your Azure Functions Runtime Tools

window, as shown in Figure 5-25. This is an optional step. You can use the code snippet

in Listing 5-9 to check whether your function is working as expected. (The log message

will be different depending on the data you have in your tables.)

Now that you have checked that your function is working as expected, let’s install the

NuGet package required for Blob Storage bindings. You can install the required package

by typing the following command in the package manager console of Visual Studio:

Figure 5-25.  Serialized JSON string displayed as a log message

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

119

Install-Package Microsoft.Azure.WebJobs.Extensions.Storage

Once you have installed the NuGet package, you will have to modify the parameters

of your run method. You need to add a blob attribute and a TextWriter type parameter

called outblob. You will be passing the Blob path and file access rights and will define

the connection property by assigning the connection string of your storage account to

the attributes constructor.

You will be passing the Blob path as report/{rand-guid}.json, file access as

FileAccess.Write, and the storage account connection as AzureWebJobsStorage. When

you define the storage connection as AzureWebJobsStorage, your function looks at

the value of AzureWebJobsStorage key present in your local.settings.json file. You

need to make sure that the value is defined as UseDevelopmentStorage=true for the

AzureWebJobsStorage key.

After you have configured the attribute of the run method of your function by adding

the blob attribute and have added the TextWriter Type parameter as outBlob, which is

the variable that represents the Blob in the function code, you will use outBlob to write

the jsonData in a JSON file whose name will be a random GUID that will be generated

with the help of the {rand-guid} binding expression. You will store this file inside the

report container. You can see the final function code in Listing 5-10.

Listing 5-10.  Code for the Schedule-Based Report Generator

using System;

using System.Collections.Generic;

using System.Data.SqlClient;

using System.Text.Json;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.Logging;

using Microsoft.Azure.WebJobs.Extensions.Storage;

using System.IO;

using System.Text;

namespace FunctionApp.ReportGenerator

{

 public static class Function1

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

120

 {

 [FunctionName("Function1")]

 �public static void Run([TimerTrigger("0 */5 * * * *")] TimerInfo

myTimer, ILogger log,

 �[Blob("report/{rand-guid}.json", FileAccess.Write, Connection

="AzureWebJobsStorage")]TextWriter outBlob)

 {

 �log.LogInformation($"C# Timer trigger function executed at:

{DateTime.Now}");

 List<Author> authors = new List<Author>();

 �string connectionString = Environment.GetEnvironmentVariable

("BookStoresDB");

 �using (SqlConnection myConnection = new SqlConnection

(connectionString))

 {

 string oString = "Select * from author";

 SqlCommand oCmd = new SqlCommand(oString, myConnection);

 myConnection.Open();

 using (SqlDataReader oReader = oCmd.ExecuteReader())

 {

 while (oReader.Read())

 {

 Author author = new Author();

 author.author_id =oReader["author_id"].ToString();

 author.first_name = oReader["first_name"].ToString();

 author.last_name = oReader["last_name"].ToString();

 author.phone = oReader["phone"].ToString();

 authors.Add(author);

 }

 myConnection.Close();

 }

 var jsonData = JsonSerializer.Serialize<List<Author>>(authors);

 log.LogInformation($"{jsonData}");

 outBlob.Write(jsonData);

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

121

 }

 }

 }

}

Listing 5-10 consists of the function code that runs every five minutes and generates

a report consisting of all the author records stored in the JSON format. Since you have

written the code for your timer-triggered report generator function, let’s test it by

running the Azure Functions Runtime Tool. If your function executed successfully, then

you should see a Blob container named Report and a JSON file with its name being a

random GUID in your local storage account. You can view this in Visual Studio with the

help of the Cloud Explorer. Alternatively, you can use the Storage Explorer to view the

Blob containers.

You can open the Cloud Explorer by clicking the view in Visual Studio and then

clicking Cloud Explorer. You will be able to see the Cloud Explorer in the Visual Studio

screen, as shown in Figure 5-26.

Figure 5-26.  Cloud Explorer view

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

122

The Cloud Explorer allows you to manage your Azure resources and manage the

storage accounts present in your local storage emulator. You need to install the Azure

workload in Visual Studio to use the Cloud Explorer, provided you are using Visual

Studio 2017 or newer.

You can see from Figure 5-26 that you have a Blob container named report in your

local storage account. As mentioned earlier, if you do not have a Blob container named

report in your Blob containers, your function will create a Blob container named report

first and then create a file with a random GUID along with the serialized data from the

authors table. You can click the report Blob container to view the file created by your

function. You should see a screen similar to the one shown in Figure 5-27 after you click

the report container.

You can double-click the file or right-click the filename and click Save to download

the file.

Figure 5-27.  Cloud Explorer view of the files generated by your function

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

123

�Summary
In this chapter, you learned how to work with timer triggers and Blob Storage output

bindings using Visual Studio and the in-portal editor of the Azure portal. You then used

these concepts to build a report generator that gets triggered every five minutes, fetches

data from a database table, and creates a JSON file by serializing the fetched data from

the database table using a Blob Storage output binding.

The following are the key takeaways from this chapter:

•	 You can trigger an Azure function using a timer trigger. The function

gets triggered depending on the configured schedule.

•	 You can create a file inside a Blob container from Azure Functions

using a Blob Storage output binding.

•	 You can declaratively configure a timer trigger and Blob Storage

output binding without having to write much code.

•	 Visual Studio provides a template to work with timer triggers.

•	 You can work with a storage emulator to build and test functions

locally that use Blob Storage bindings.

Chapter 5 Build a Report Generator with a Timer Trigger and Blob Storage Bindings

125
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_6

CHAPTER 6

To-Do API with an HTTP
Trigger and a Table
Storage Binding
At some point you may need to invoke an Azure function using HTTP calls. This will

come in handy when you invoke an Azure function from your application code and

pass the data to the function to process. The application code can use HTTP triggers to

invoke Azure functions and pass the data to the function as the trigger payload. You may

also encounter scenarios where the function will process the business logic and save

the processed data in Table Storage. You can use a Table Storage binding to achieve this

functionality.

In the previous chapter, you learned all about the essential concepts of timer triggers

and Blob Storage bindings. You built a report generator application using a timer trigger

and Blob Storage binding. In this chapter, you will explore how to implement an HTTP

trigger and Table Storage binding for the Azure Functions service and build a to-do API

that will populate your to-do list for the day.

�Structure of the Chapter
In this chapter, you will explore the following aspects of HTTP triggers and Table Storage

bindings:

•	 Getting started with HTTP triggers and use cases

•	 Building a sample application using an HTTP trigger

•	 Routing HTTP-triggered Azure functions

https://doi.org/10.1007/978-1-4842-7122-3_6#DOI

126

•	 Getting started with Table Storage bindings and use cases

•	 Building a sample application using a Table Storage binding

•	 Creating a to-do API with HTTP triggers and Table Storage bindings

�Objectives
After studying this chapter, you will be able to do the following:

•	 Implement HTTP triggers for Azure Functions

•	 Implement Table Storage bindings for Azure Functions

�Getting Started with HTTP Triggers and Use Cases
An HTTP trigger helps you execute an Azure function using HTTP verbs or methods.

You can add your business logic or data access logic to the Azure function and enable an

HTTP trigger for the Azure function. Then from your application code or user interface,

you can invoke the Azure function using an HTTP trigger. As a best practice, you need to

break the business logic or the data access logic into short-running code pieces so that

your Azure function does not time out and you adhere to the serverless principles. HTTP

triggers help you build serverless APIs and let you expose the Azure function as a web

hook. You can pass data to the Azure function as the trigger payload using a query string

or POST parameter value.

The following are a few example scenarios where you can use HTTP triggers:

•	 You can host common utility logic in an Azure function that can be

used across all the application modules. The Azure function can have

an HTTP trigger enabled and can be called using an HTTP GET or

POST method.

•	 You can host code on the Azure function that performs a business

functionality such as report generation or data update or any other

such activity on demand. You can invoke the Azure function using an

HTTP trigger whenever needed.

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

127

•	 You can build a data access layer to fetch data from the underlying

database and give it to you. Your application can invoke the Azure

function using HTTP calls to perform CRUD operations on the

database.

�Build a Sample Application Using an HTTP Trigger
Now let’s build an Azure function using Visual Studio and enable an HTTP trigger for the

Azure function. Open Visual Studio and click “Create a new project.” See Figure 6-1.

Select the Azure Functions template. Click Next. See Figure 6-2.

Figure 6-1.  Create a new project

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

128

Provide a name for the project and click Create. See Figure 6-3.

Figure 6-2.  Select the Azure Functions template

Figure 6-3.  Provide the project details

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

129

Select the “Http trigger” template and set the authentication method to Anonymous.

This action will help you invoke the function without using any access keys. However,

you should choose the Anonymous authentication type only in development and testing

scenarios. In other environments such as staging and production, you should use

Function as the access level. See Figure 6-4.

The Visual Studio solution with an HTTP-triggered Azure function gets created.

Listing 6-1 shows the code for Function1.cs. The code gets the name parameter value

passed either in the HTTP request query string or in the body, appends it to a Hello

message, and returns the message to the caller.

Listing 6-1.  Function1.cs Code

using System;

using System.IO;

using System.Threading.Tasks;

Figure 6-4.  Select an HTTP trigger template

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

130

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

 public static class Function1

 {

 [FunctionName("Function1")]

 public static async Task<IActionResult> Run(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post", Route =

 null)] HttpRequest req,

 ILogger log)

 {

 log.LogInformation("C# HTTP trigger function processed a

 request.");

 string name = req.Query["name"];

 string requestBody = await new

 StreamReader(req.Body).ReadToEndAsync();

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 name = name ?? data?.name;

 string responseMessage = string.IsNullOrEmpty(name)

 ? �"This HTTP triggered function executed successfully.

Pass a name in the query string or in the request body

for a personalized response."

 : $"Hello, {name}. This HTTP triggered function executed

 successfully.";

 return new OkObjectResult(responseMessage);

 }

 }

}

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

131

Now run the solution. Wait until the console displays the function URL in the

execution console. See Figure 6-5.

Copy the URL from the console window. Append the URL with the query string

?name=Abhishek and then browse to the URL. See Figure 6-6.

Figure 6-5.  Function execution

Figure 6-6.  Browse to the function URL along with the query string

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

132

�Routing in HTTP-Triggered Azure Functions
You can define a route for an Azure function with ease. By default, whenever you create

an Azure function, the following route gets created for the Azure function, and you can

navigate to the function using that route:

http://{FunctionAppName}.azurewebsites.net/api/{FunctionName>}

Here, {FunctionAppName} is the name of the Azure Functions app service, and

{FunctionName} is the name of the function.

However, in some situations, you may have to customize the default route. You may

have to replace api and {FunctionName} in the function route with more meaningful

values. For example, you may need to define the route based on the business processing

it does, as follows:

http://<FunctionAppName>.azurewebsites.net/Maths/Add/{param1}/{param2}

http://<FunctionAppName>.azurewebsites.net/Maths/Subtract/{param1}/{param2}

http://<FunctionAppName>.azurewebsites.net/StringOps/Concat/{param1}/{param2}

http://<FunctionAppName>.azurewebsites.net/StringOps/Replace/{param1}/{param2}

Here, {param1} and {param2} are input parameters for the Azure function.

Let’s modify the Azure function solution you developed earlier to enable a custom

route. Open the Azure function solution that you built earlier using Visual Studio. Let’s

first modify the api value in the URL. Open the host.json file. Add the extensions

section and provide the value of the routePrefix parameter as Maths, as shown in

Listing 6-2.

Listing 6-2.  Host.json with a Custom Route Prefix

{

 "version": "2.0",

 "logging": {

 "applicationInsights": {

 "samplingExcludedTypes": "Request",

 "samplingSettings": {

 "isEnabled": true

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

133

 }

 }

 },

 "extensions": {

 "http": {

 "routePrefix": "Maths"

 }

 }

}

Now let’s modify the Function1.cs code to add a custom route for the Azure

function (see Listing 6-3). Add the route value as Maths/{param1}/{param2} in the Route

parameter of the HttpTrigger attribute and add two input parameters, param1 and

param2, matching the route parameters defined.

Listing 6-3.  Function1.cs with a Custom Route

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

 public static class Function1

 {

 [FunctionName("Function1")]

 public static async Task<IActionResult> Run(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",

 Route = "Add/{param1}/{param2}")] HttpRequest req,

 int param1, int param2,

 ILogger log)

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

134

 {

 log.LogInformation("C# HTTP trigger function processed a

 request.");

 �string responseMessage = "The computed addtition value

is"+(param1 + param2).ToString();

 return new OkObjectResult(responseMessage);

 }

 }

}

Now let’s execute the Azure function in Visual Studio. You can see the Azure function

with a custom route. See Figure 6-7.

Now let’s browse to the Azure function using the following URL (see Figure 6-8):

http://localhost:7071/Maths/Add/22/23

Figure 6-7.  Function execution

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

135

�Getting Started with Table Storage Bindings and
Use Cases
Sometimes the Azure function will process the business logic and save the output data

in Azure Table Storage. You may also have scenarios where the Azure function will read

the data from Table Storage and process it. You can use a Table Storage input binding or

Table Storage output binding and achieve this functionality with ease. You need to add a

declarative configuration to add a Table Storage binding to the Azure function, and you

can interact with the Azure Table Storage data using a few lines of code.

The following are few of the use cases where you can use an Azure Table Storage

binding:

•	 For the applications storing data in Azure Table Storage, you can

write CRUD operations using Azure functions and access the data

using Table Storage input or output bindings.

•	 You can build a to-do list application to use an Azure function to

store your daily task list in Azure Table Storage. You need to enable an

Azure Table Storage binding for the Azure function.

•	 You may choose to persist your application logs or audit data in Table

Storage. You can use an Azure function to store the errors, exceptions,

logs, and audit details in Azure Table Storage. You need to enable an

Azure Table Storage binding for the Azure function.

Figure 6-8.  Browse to the function URL

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

136

�Build a Sample Application Using a Table Storage
Binding
Now let’s build a sample application using a Table Storage binding. As a prerequisite,

let’s create a storage account and then create a storage table in the storage account.

Go to the Azure portal and click “Create a resource.” See Figure 6-9.

Search for storage account and click the search result “Storage account.” See Figure 6-10.

Click Create. See Figure 6-11.

Figure 6-10.  Select “Storage account”

Figure 6-9.  Create a resource

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

137

Select your Azure subscription, your resource group, and the location where you

need to create the storage account. Provide a name for the storage account. Click

“Review + create.” See Figure 6-12.

Figure 6-11.  Click Create

Figure 6-12.  Click “Review + create”

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

138

Click Create. This action will create the storage account. See Figure 6-13.

Once the storage account gets created, copy the connection string for the storage

account. Go to “Access keys” and click “Show keys.” The connection string will be

displayed. See Figure 6-14.

Figure 6-13.  Click Create

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

139

Now let’s go back to the Azure function solution that you created earlier and open

local.settings.json (see Listing 6-4). Add a key for the connection string named

ConnectToTable and provide the Azure storage account connection string that you

copied from the Azure portal earlier.

Listing 6-4.  local.settings.json

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 �"ConnectToTable": "[Replace with connection string copied from Azure

Portal]"

 }

}

Now let’s add the NuGet package Microsoft.Azure.WebJobs.Extensions.Storage

for the project. This action will help the Azure function interact with the Azure storage.

Open Function1.cs and replace the contents with Listing 6-5. The properties in the

MathResult class refer to the columns in Azure Table Storage. Specify the return:

Figure 6-14.  Copy the connection string

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

140

Table attribute and provide the name of the connection string you specified in the

local.settings.json file. ResultTable mentioned in the attribute is the name of the

table that will be created in Azure Table Storage.

Listing 6-5.  Function1.cs

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

 public static class Function1

 {

 [FunctionName("Function1")]

 [return: Table("ResultTable", Connection = "ConnectToTable")]

 public static MathResult Run(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",

 Route = "Add/{param1}/{param2}")] HttpRequest req,

 int param1, int param2,

 ILogger log)

 {

 log.LogInformation("C# HTTP trigger function processed a

 request.");

 int result = param1 + param2;

 return new MathResult { PartitionKey = "Math",

 RowKey = Guid.NewGuid().ToString(),

 Operation="Add", Result = result };

 }

 }

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

141

 public class MathResult

 {

 public string PartitionKey { get; set; }

 public string RowKey { get; set; }

 public string Operation { get; set; }

 public int Result { get; set; }

 }

}

Execute the Azure function and browse to the following function URL:

http://localhost:7071/Maths/Add/2/3

Go to the Storage Explorer for the storage account in the Azure portal, and you can

find the table with fields as in the MathResult class. See Figure 6-15.

�Create a To-Do API with an HTTP Trigger and a Table
Storage Binding
Now let’s build a to-do API. Modify the Function1.cs file as shown in Listing 6-6. In

the function’s Route parameter, you send the date, time, and to-do activity to the Azure

function. The properties in the ToDo class refer to the columns in Azure Table Storage.

Specify the return: Table attribute and provide the name of the connection string you

have specified in the local.settings.json file. ToDoList mentioned in the attribute is

the name of the table that will get created in Azure Table Storage.

Figure 6-15.  ResultTable in Azure Storage Explorer

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

142

Listing 6-6.  Function1.cs

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

 public static class Function1

 {

 [FunctionName("Function1")]

 [return: Table("ToDoList", Connection = "ConnectToTable")]

 public static ToDo Run(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",

 Route = "ToDo/{date}/{time}/{activity}")] HttpRequest req,

 string date, string time, string activity,

 ILogger log)

 {

 log.LogInformation("C# HTTP trigger function processed a

 request.");

 return new ToDo { PartitionKey = date,

 RowKey = Guid.NewGuid().ToString(),

 Time=time,

 Activity=activity };

 }

 }

 public class ToDo

 {

 public string PartitionKey { get; set; }

 public string RowKey { get; set; }

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

143

 public string Time { get; set; }

 public string Activity { get; set; }

 }

}

Execute the Azure function and browse to the following function URL:

http://localhost:7071/Maths/ToDo/10-Feb-2021/4 20PM/Get vegetables from

market

Go to the Storage Explorer for the storage account in the Azure portal, and you can

find the table ToDoList with fields as in the ToDo class.

Now let’s create another Azure function that you can use to read from the to-do

list in Azure Table Storage. Right-click the Azure function project and add a new Azure

function named Function2.cs. Make sure you use the HTTP trigger template for the

function. See Figure 6-16.

Add the ToDoRead class to the Azure function (see Listing 6-7). It should inherit from

the TableEntity class. You are using CloudTable to get the results from Table Storage,

and you are using TableQuery to query the records in Table Storage. You need to get the

records for the date and time passed as a query string by the user.

Figure 6-16.  Add a new function

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

144

Listing 6-7.  ToDoRead Class

using System;

using System.IO;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.Cosmos.Table;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace HTTPTriggeredFunction

{

 public static class Function2

 {

 [FunctionName("Function2")]

 public async static void Run(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",

 Route = "ToDo/{date}/{time}")] HttpRequest req,

 [Table("ToDoList", Connection = "ConnectToTable")] CloudTable

 cloudTable, string date, string time, ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function processed a

 request.");

 //Create query to get items from the Table Storage selectively only

 //for the date and time that user passes in the route parameter.

 �TableQuery<ToDoRead> rangeQuery = new TableQuery<ToDoRead>().Where(

 TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey",

 QueryComparisons.Equal, date),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("Time",

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

145

 QueryComparisons.Equal, time)));

 foreach (ToDoRead entity in

 await cloudTable.ExecuteQuerySegmentedAsync(rangeQuery, null))

 {

 log.LogInformation(

 "Your TO DO : "+entity.Activity);

 }

 }

 }

 public class ToDoRead:TableEntity

 {

 public string Time { get; set; }

 public string Activity { get; set; }

 }

}

Run the Azure function project and browse to the following URL. Pass the date and time.

The function will fetch the activity that you added for that date and time. See Figure 6-17.

http://localhost:7071/Maths/ToDo/10-Feb-2021/4 20PM

Figure 6-17.  Triggered function result

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

146

Note T o keep the illustration simple, the date and time fields are handled as
strings in Table Storage. In the actual production scenario, these fields should be
corresponding date and time types.

�Summary
In this chapter, you learned how to work with HTTP triggers and Storage Table input and

output bindings using Visual Studio. You then used these concepts to build a to-do API

that you can trigger with an HTTP GET request. You can pass the date, time, and activity

you are planning to do during that time. The to-do API will add the activity to the to-do

list and fetch the to-do list activity.

The following are the key takeaways from this chapter.

•	 You can trigger an Azure function using an HTTP trigger. The

function gets invoked using HTTP verbs like GET, POST, PUT, and

others.

•	 You can add records to Table Storage using a Table Storage output

binding.

•	 You can read records from Table Storage using a Table Storage input

binding.

•	 You can declaratively configure an HTTP trigger and Table Storage

binding without having to write much code.

•	 Visual Studio provides a template to work with an HTTP trigger.

Chapter 6 To-Do API with an HTTP Trigger and a Table Storage Binding

147
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_7

CHAPTER 7

Creating Custom Bindings
for Azure Functions
Bindings help the Azure Functions service exchange data with other Azure services

and external services with ease. You need to add a declarative configuration to enable

bindings for functions. Azure provides a wide range of bindings out of the box. In

most scenarios, the bindings provided by Azure should be good enough to achieve the

intended application functionality such as reading from Blob Storage, putting some data

in Queue Storage, triggering a binding from RabbitMQ, and much more. However, there

will be scenarios or use cases where the standard bindings provided by Azure may not fit

into your business scenarios or you need to interact with a new service for which Azure

Functions does not have readily available binding support. For such scenarios, you can

build a custom binding based on your needs.

In the previous chapter, you learned how to implement a to-do API using HTTP

triggers and Table Storage bindings. In this chapter, you will explore the concept of

custom bindings and learn how to implement a custom binding for a .NET Core–based

Azure function.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Azure Functions custom

bindings:

•	 Introduction to custom bindings

•	 Use cases for custom bindings

•	 Building a custom binding for Azure Functions

https://doi.org/10.1007/978-1-4842-7122-3_7#DOI

148

�Objectives
After studying this chapter, you will be able to do the following:

•	 Understand custom bindings for Azure Functions

•	 Create a custom binding for Azure Functions

�Introduction to Custom Bindings
Bindings require less coding on your part and simplify your code. You need to add

declarative configurations in the Azure Functions code to interact with an external

service or an Azure service. Azure provides an array of input and output bindings out

of the box. However, there are scenarios where the standard function bindings may not

meet your business requirements. In these cases, you can build a custom input or output

binding to meet your business needs. Creating a custom binding is an easy and one-time

activity, and the binding can be reused across functions.

You can build a custom binding using .NET by following a couple of easy steps. You

can create custom input and output bindings using the Azure Functions SDK based on

the WebJobs extension libraries. You just focus on building the business functionality

for the custom binding, and most of the heavy lifting is done by the underlying .NET

libraries. Once the custom binding is ready, you can consume it in your functions just

like the standard bindings.

�Use Cases for Custom Bindings
Before creating a custom binding, you should first determine whether an existing

binding suffices based on your requirements. Azure offers a wide range of function

bindings, and you should be able to manage most of the scenarios with those bindings.

You may need to build a custom binding for the following scenarios:

•	 The existing bindings do not meet the requirements, and you need

more functionality to be addressed. For example, you need to update

some entities in Azure Table Storage. This scenario is not supported

by any existing Azure Table Storage binding.

Chapter 7 Creating Custom Bindings for Azure Functions

149

•	 Azure Functions does not have a binding for an Azure service. For

example, say you need to interact with Azure Cache for Redis and work

on cache data. There is currently no binding for Azure Cache for Redis.

•	 You need to connect with an external non-Azure service or

component and exchange data with it. For example, you need to pull

some data from Twitter. There is currently no binding available for

Azure Functions to interact with Twitter.

•	 You need to achieve a specific functionality with functions that

need to deal with multiple services and components at a time. For

example, you can build a binding to fetch data from multiple storages

and data sources like Azure Cosmos DB, Azure SQL, or Amazon S3

and then aggregate the data. Azure Functions can build a custom

report with this data.

�Build a Custom Binding for Azure Functions
Let’s create a custom binding for an Azure function that will help in converting the data

from one format to another. A third-party service processes the users’ data and saves the

data in a centralized location accessible to both the third-party service and the Azure

function. The third-party service generates the data as listed in Listing 7-1.

Listing 7-1.  Data Format Generated by the Third-Party Service

[name:Abhishek Mishra,Age:32,subject:maths]

The Azure function needs to further process the data generated by the third-party

service. However, the Azure function does not understand the current data format being

generated and can only work on the format in Listing 7-2.

Listing 7-2.  Data Format That the Function Understands

{ "name":"Abhishek Mishra","Age":"32","subject":"maths" }

Before processing the data, you need to implement code that will format the data,

and that code will not be reusable; it is good only for the Azure function where it is

implemented. To handle this scenario, you can create a custom binding that will read

Chapter 7 Creating Custom Bindings for Azure Functions

150

the data from the central location, do the necessary conversion, and then pass on the

converted data to the Azure function. You are saved from implementing code at the

function level and can use the binding in multiple functions if needed. See Figure 7-1.

You can create a custom binding using the following steps. In this chapter, you will

use Visual Studio 2019 to build the custom binding.

	 1.	 Create an Azure function.

	 2.	 Implement the binding attribute class.

	 3.	 Implement the binding logic class.

	 4.	 Implement the binding extension class.

	 5.	 Implement the binding startup class.

	 6.	 Incorporate the binding in the Azure function.

Now let’s implement each of these steps.

Figure 7-1.  Custom binding scenario

Chapter 7 Creating Custom Bindings for Azure Functions

151

�Create an Azure Function
Open Visual Studio and click “Create a new project.” See Figure 7-2.

Select the Azure Functions template. Click Next. See Figure 7-3.

Figure 7-2.  Create a function project

Chapter 7 Creating Custom Bindings for Azure Functions

152

Provide the project name and click Create. See Figure 7-4.

Figure 7-3.  Select the Azure Functions template

Figure 7-4.  Provide the function project details

Chapter 7 Creating Custom Bindings for Azure Functions

153

Select “Http trigger” and click Create. See Figure 7-5.

The Azure function gets created. You will modify the Azure function code once you

have the custom binding ready.

�Implement the Binding Attribute Class
In this section, you’ll add a new project of type .NET Standard Class Library to the

solution called Custom Binding. To add a new project to the solution, right-click the

solution, click Add, and then click New Project. See Figure 7-6.

Figure 7-5.  Select “Http trigger”

Chapter 7 Creating Custom Bindings for Azure Functions

154

Select Class Library (.NET Standard) as the class type and click Next. See Figure 7-7.

Figure 7-6.  Add a new project to the solution

Chapter 7 Creating Custom Bindings for Azure Functions

155

Provide the name of the project as CustomFormatBinding.

Once the project gets created, add the following packages from NuGet:

•	 Microsoft.NET.Sdk.Functions

•	 Microsoft.Azure.WebJobs

•	 Microsoft.Azure.Webjobs.Core

Now let’s add a class named FormatterBindingAttribute.cs in the

CustomFormatBinding project. Right-click the project, click Add, and then click Class.

See Figure 7-8.

Figure 7-7.  Set the type of project as Class Library (.NET Standard)

Chapter 7 Creating Custom Bindings for Azure Functions

156

Place the code shown in Listing 7-3 in the FormatterBindingAttribute.cs class.

You need to create a custom attribute that you can decorate as a binding for the Azure

function. The attribute has a property called DataFileLocation that can point to

the location where the file to be formatted is kept. You decorate this property with

the AutoResolve attribute so that it will be able to resolve the path from the local.

settings.json file.

Listing 7-3.  FormatterBindingAttribute Class

using Microsoft.Azure.WebJobs.Description;

using System;

namespace CustomFormatBinding

Figure 7-8.  Add a new class

Chapter 7 Creating Custom Bindings for Azure Functions

157

{

 [Binding]

 �[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.

ReturnValue)]

 public class FormatterBindingAttribute:Attribute

 {

 [AutoResolve]

 public string DataFileLocation { get; set; }

 }

}

�Implement the Binding Logic Class
Now let’s implement the binding logic class. Here you will write the logic to convert

the data in the file in a format that the function will need to process the data. Before

you implement the binding logic class, let’s implement a model class that will hold the

formatted data and will be available as an input parameter to the function. Add a class

named FormatterModel.cs in the CustomFormatBinding project and replace the class

code with the code shown in Listing 7-4.

Listing 7-4.  FormatterModel Class

using System;

using System.Collections.Generic;

using System.Text;

namespace CustomFormatBinding

{

 public class FormatterModel

 {

 public string DataFilePath { get; set; }

 public string Content { get; set; }

 }

}

Chapter 7 Creating Custom Bindings for Azure Functions

158

Now let’s add a class for the binding logic in the CustomFormatBinding project.

You will name the class FormatterBinding.cs. You have an Initialize method in

this class that adds a binding rule that specifies the conversion operation’s logic. The

Convert performs the data formatting activity and must be passed as a parameter for the

BindToInput method. Replace the code in Listing 7-5 with the code generated when you

created the class.

Listing 7-5.  FormatterBinding Class

using System.IO;

using Microsoft.Azure.WebJobs.Description;

using Microsoft.Azure.WebJobs.Host.Config;

namespace CustomFormatBinding

{

 [Extension("MyFileReaderBinding")]

 public class FormatterBinding : IExtensionConfigProvider

 {

 public void Initialize(ExtensionConfigContext context)

 {

 var rule = context.AddBindingRule<FormatterBindingAttribute>();

 rule.BindToInput<FormatterModel>(BuildItemFromAttribute);

 }

 private FormatterModel BuildItemFromAttribute(FormatterBindingAttribute

 arg)

 {

 string formattedData = string.Empty;

 if (File.Exists(arg.DataFileLocation))

 {

 formattedData = "{";

 string formattedDataAsIs =

 File.ReadAllText(arg.DataFileLocation);

 // Replace the start [and end]

 formattedDataAsIs= formattedDataAsIs.TrimStart(new char[] { '['

 }).TrimEnd(new char[] { ']' });

Chapter 7 Creating Custom Bindings for Azure Functions

159

 // Data formatting activity/logic

 string[] tokens = formattedDataAsIs.Split(new char[] { ',' });

 foreach (var token in tokens)

 {

 string[] subToken = token.Split(new char[] { ':' });

 formattedData = formattedData + "\"" + subToken[0] + "\" :

 " + "\"" + subToken[1] + "\" , ";

 }

 formattedData = formattedData.Trim().TrimEnd(new char[] { ','

 });

 formattedData = formattedData + "}";

 }

 return new FormatterModel

 {

 DataFilePath = arg.DataFileLocation,

 FormattedData = formattedData

 };

 }

 }

}

�Implement the Binding Extension Class
Now let’s implement the binding extension class. Create a new class named

BindingExtension.cs in the CustomFormatBinding project. Place the code in Listing 7-6

in the class. You will invoke the method AddCustomBinding in the Startup class. When this

method gets invoked, it will call the binding formatter class to do the necessary conversion

and return the converted data.

Chapter 7 Creating Custom Bindings for Azure Functions

160

Listing 7-6.  BindingExtension Class

using Microsoft.Azure.WebJobs;

using System;

namespace CustomFormatBinding

{

 public static class BindingExtension

 {

 public static IWebJobsBuilder AddCustomBinding(this IWebJobsBuilder

 builder)

 {

 if (builder == null)

 {

 throw new ArgumentNullException(nameof(builder));

 }

 builder.AddExtension<FormatterBinding>();

 return builder;

 }

 }

}

�Implement the Binding Startup Class
Now let’s create the startup class that will inject the binding into the runtime execution

context. Add a class called BindingStartup.cs in the CustomFormatBinding project.

Use the code in Listing 7-7 in the class.

Listing 7-7.  BindingStartup Class

using CustomFormatBinding;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Hosting;

[assembly: WebJobsStartup(typeof(BindingStartup))]

namespace CustomFormatBinding

{

Chapter 7 Creating Custom Bindings for Azure Functions

161

 public class BindingStartup : IWebJobsStartup

 {

 public void Configure(IWebJobsBuilder builder)

 {

 builder.AddCustomBinding();

 }

 }

}

�Incorporate the Binding in the Azure Function
Now let’s add the custom binding that you created in the Azure function. Make sure you

add a using reference to the CustomFormatBinding project in the function project. You

pass a parameter named formatterModel of type FormatterModel, and you decorate it

with the attribute FormatterBinding. The formatterBinding parameter will have the

formatted data. We created the FormatterBinding attribute and the FormatterModel

in the CustomFormatBinding project earlier. Listing 7-8 shows the code for the Azure

function.

Listing 7-8.  Function Class

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

using CustomFormatBinding;

namespace FuncBindingDemo

{

 public static class Function1

 {

 [FunctionName("Function1")]

 public static IActionResult Run(

Chapter 7 Creating Custom Bindings for Azure Functions

162

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post", Route =

 "custombinding/{name}")]

 HttpRequest req,

 ILogger log,

 string name,

 [FormatterBinding(DataFileLocation = "%filepath%\\{name}")]

 FormatterModel formatterModel)

 {

 return (ActionResult)new

 OkObjectResult(formatterModel.FormattedData);

 }

 }

}

Add the filepath parameter and specify the centralized location of the file in the

local.settings.json file. See Listing 7-9.

Listing 7-9.  Local.settings.json File

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "filepath": "C:\\Abhishek\\Test\\"

 }

}

Place a file with the content in Listing 7-10 at the location you provided in the

filepath in the local.settings.json file.

Listing 7-10.  Content of File to Be Converted by the Binding

[name:Abhishek Mishra,Age:38,subject:maths]

Execute the function. See Figure 7-9.

Chapter 7 Creating Custom Bindings for Azure Functions

163

Pass the filename in the function URL route. The binding will convert the data, and

the function returns the converted data in the browser. See Figure 7-10.

Figure 7-9.  Function execution output

Figure 7-10.  Browse to the function

Chapter 7 Creating Custom Bindings for Azure Functions

164

�Summary
In this chapter, you learned what custom bindings are and the scenarios where you

need to use custom bindings. You explored the different steps needed to create a custom

binding, and then you implemented a custom binding using Visual Studio. You created

a custom binding that will convert the data format of an existing data into a format

needed by the function to process the data further. You incorporated the logic for data

conversion in the binding, and then you applied the binding in the function and got the

formatted data without needing to write much code.

The following are the key takeaways from this chapter:

•	 You can create custom bindings whenever the standard function

bindings do not meet your scenario.

•	 You need to build the custom binding using .NET.

•	 You can reuse the custom binding across functions.

•	 The following are the steps to create a custom binding and use it in

an Azure function:

	 1.	 Create an Azure function.

	 2.	 Implement a binding attribute class.

	 3.	 Implement the binding logic class.

	 4.	 Implement the binding extension class.

	 5.	 Implement the binding startup class.

	 6.	 Incorporate the binding in the Azure function.

In the next chapter, you will explore how to create serverless APIs using Azure

Functions.

Chapter 7 Creating Custom Bindings for Azure Functions

165
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_8

CHAPTER 8

Building Serverless APIs
Using Azure Functions
and Azure SQL
Most applications these days have separate client-side and server-side projects. Client-

side applications send a request to the server-side application to interact with the

database or to perform a business operation. Server-side projects are normally a web

API that takes the request from the client app, processes the request, and gives back an

appropriate response that can be later used by the client application to display the data.

In such scenarios, you need to deploy your client and API project in an Azure Web App,

which will need an Azure App Service Plan. When you deploy your apps to an Azure Web

App, you will have to pay monthly costs irrespective of the usage of your apps. This is one

of the areas where Azure Functions shines.

One of the most promising and popular use cases of the Azure Functions service

among developers has been to build serverless APIs. With the micro billing nature and

autoscaling capability of an Azure function, it is an ideal choice to build APIs that are

prone to have unexpected spikes in traffic. With the help of the Azure Functions offering,

you can build highly scalable and cost-efficient solutions.

As you have already learned about HTTP-triggered Azure functions and their use

cases in previous chapters, you are going to use that knowledge to build serverless APIs

using HTTP-triggered functions in this chapter that will run whenever they receive a

request. After being triggered, the APIs processes the request and fetches the data by

interacting with Azure SQL Database and providing a response to the client.

https://doi.org/10.1007/978-1-4842-7122-3_8#DOI

166

�Structure of the Chapter
This chapter will explore the following aspects of HTTP triggers and Azure SQL:

•	 Getting started with Azure SQL

•	 Building a database and table in Azure SQL

•	 Getting started with HTTP triggers

•	 Creating serverless APIs using HTTP-triggered functions and

Azure SQL

�Objectives
After studying this chapter, you will be able to do the following:

•	 Create serverless APIs using Azure Functions

•	 Interact with Azure SQL from your functions

�Problem Statement
Let’s say you are working for a large multinational company called Asgard Inc., which is

a leading ecommerce firm. You have a presence across the globe and provide services to

more than 180 countries with a consumer base of more than 500 million users.

Product managers need to manage the inventory and product information of

all the products around the world. With the unpredictable nature of the customers’

consumption patterns, your application usage can increase and decrease at any time

without giving you a warning to react to a sudden traffic surge.

To handle such traffic, your team is tasked with building an API project that will be

consumed by a client-side application, which can scale up and down to handle all the

requests coming without letting your application crash. Your application needs to be

globally available, highly scalable, and cost-effective.

Previously your team was planning to build a traditional web API for the application

that will be later deployed in an Azure Web App. To make the API scalable, your team

had planned to leverage the autoscale feature of the App Service Plan by defining

autoscale rules for the application to scale out. Though this would have been a really

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

167

good choice to make your application scalable, the cost implications were quite high.

You had to pay monthly fees to your cloud vendors for the dedicated resources you

used to host your application irrespective your application’s usage. In other words, even

if your API didn’t receive a single request from the client, you had to pay the monthly

fees. And every time your app scaled out to meet a surge in traffic, you had to pay for the

scaled-out instance too, irrespective of resource consumption.

While your manager was elaborating on the plan for the project with the team

members, it hit you that building serverless APIs for this project would be the perfect

solution. By its inherent nature, a serverless API is autoscalable, which means you don’t

need to worry about writing conditions to enable autoscaling anymore, and they are

micro billed; i.e., you pay for per-second resource consumption and execution. So, you

pay only for the time your application actually runs.

Though the proposal for building serverless APIs for the application meets all the

requirements of the project, your manager is a bit skeptical about using serverless APIs

for production workloads yet. To check the viability of the solution, he has asked you to

come up with a proof of concept on building serverless APIs for all product-related tasks

that will be interacting with Azure SQL Database. See Figure 8-1.

Figure 8-1.  Architecture diagram of the proof of concept

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

168

So, you need to build the APIs to perform the following operations for the proof of

concept:

	 1.	 Create the product.

	 2.	 Update the product.

	 3.	 Get all the products.

	 4.	 Get a product by ID.

	 5.	 Delete a product by ID.

To complete this proof of concept, you need the following resources:

•	 Active Azure subscription

•	 Azure SQL Database

•	 Visual Studio 2019 Community edition

•	 Azure development workload

•	 Postman

•	 Microsoft SQL Server Management Studio 17 or Azure Data Studio

We have identified all the operations that need APIs to complete the proof of

concept. Let’s start building the proof of concept.

�Creating an Azure SQL Database Instance in the
Azure Portal
According to Microsoft, Azure SQL Database is a fully managed platform-as-a-service

(PaaS) database engine that handles most database management functions such as

upgrading, patching, backup, and monitoring without user involvement. Azure SQL

Database runs on the latest stable version of the SQL Server Database Engine.

In this section, you’ll learn how to create an instance of Azure SQL Database to store

data for your proof of concept. To create an instance of Azure SQL Database, go to the

Azure portal. Type Azure SQL in the search bar and click the result. See Figure 8-2.

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

169

Now click Create to create an instance of Azure SQL Database. See Figure 8-3.

You will need to select a deployment option in this window. Let’s select “SQL

databases” and leave the resource type as “Single database.” Click Create. See Figure 8-4.

Figure 8-2.  Click Azure SQL

Figure 8-3.  Create an instance of Azure SQL Database

Figure 8-4.  SQL deployment options

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

170

On the Basics tab of the Create SQL Database screen, select the subscription. Then

select the resource group that you want this resource to be created in. For the database

name, enter Product and select the server if you want this database to be created in one

of your existing servers. If you want to create a new server, click Create New. Now you

will be required to fill in the following fields:

•	 Server Name

•	 Server Admin Login

•	 Password

•	 Confirm Password

•	 Location

Once you have filled in all these required fields, click OK. Keep Elastic Pool option

as No. Click Configure Database and set the compute tier to Serverless. After you fill in all

the required fields for the Basic tab section, click Next : Networking.

On the Networking tab, select the Public endpoint as the connectivity method and select

Yes for Add Current Client IP Address, as shown in Figure 8-5. Now click “Review + create.”

Figure 8-5.  Networking tab

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

171

On the “Review + create” tab, you will see a summary of all the configuration and

options you have selected to create this resource along with a monthly estimated cost for

this resource. Click Create to provision this resource in Azure.

Once the resource has been provisioned, go to the resource. Get the server name and

connection string from the Overview section of your resource, as shown in Figure 8-6.

To get the connection string, you will need to click the “Show database connection

strings” link to get the connection string depending on the SQL Server driver. You are

going to copy the connection string value from the ADO.NET tab. Note that you will have

to replace {your_password} with your server password.

Let’s open SSMS to create the ProductInformation table in your product database,

which will be used by your serverless APIs to perform various operations. Enter the

server name of your Azure SQL Database instance. You can find it in the Overview

section of the resource in the Azure portal, as shown in Figure 8-6. Then set the

authentication type to SQL Server Authentication, provide your server admin login

name and the password that you entered while creating the server, and click Connect, as

shown in Figure 8-7, to connect with your Azure SQL Database resource via SSMS.

Figure 8-6.  Overview of your resource

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

172

Once you have connected with the Azure SQL Database instance that you

have created in the Azure portal, execute the query shown in Listing 8-1 to create a

ProductInformation table to store product information.

Listing 8-1.  Create the ProductInformation Table

CREATE TABLE [dbo].[ProductInformation](

 [Product_ID] [int] IDENTITY(1,1) NOT NULL,

 [Product_Name] [varchar](40) NOT NULL,

 [Product_Description] [varchar](40) NOT NULL,

 [Product_Price] [int] NOT NULL,

 [Product_Quantity] [int] NOT NULL,

 [Category_Name] [varchar](40) NOT NULL

)

GO

After creating the ProductInformation table in your product database, you are all set

to build your serverless APIs for the proof of concept.

Figure 8-7.  Connect with the Azure SQL Database instance using SSMS

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

173

�Building Serverless APIs for the Proof of Concept
An Azure function can be used to build event-driven serverless solutions; in addition,

you can build serverless APIs with the help of HTTP-triggered functions. In the previous

chapter, we covered the different concepts of HTTP-triggered functions such as routing

while building a to-do API, which interacts with table storage using bindings.

While building the proof of concept, you will learn how to interact with an instance

of Azure SQL Database using ADO.NET from Azure Functions. You’ll build five APIs for

the purpose of this proof of concept, for the following tasks:

	 1.	 CreateProduct function: This HTTP-triggered function

will let the product managers create new products in your

ProductInformation table.

URL endpoint: https://{functionapp-url}/api/product

Request method: POST

	 2.	 UpdateProduct function: This HTTP-triggered Azure function

will let the client-side app update any product information such as

product price, description, category, etc., of the existing products

present in your ProductInformation table.

URL endpoint: https://{functionapp-url}/api/product

Request method: PUT

	 3.	 GetProduct function: This HTTP-triggered Azure function

will let the client-side app get the details like product name,

description, price, etc., of all the products present inside of your

ProductInformation table.

URL endpoint: https://{functionapp-url}/api/product

Request method: GET

	 4.	 GetProductById function: This HTTP-triggered Azure function

will let the client-side app get the details such as product

name, description, price, etc., of specific products in your

ProductInformation table depending on the product ID specified

in the URL route.

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

174

URL endpoint: https://{functionapp-url}/api/product/{id}

Request method: GET

	 5.	 DeleteProduct function: This HTTP-triggered Azure function will

let the client-side app delete a specific product present in your

ProductInformation table depending on the product ID specified

in the URL route.

URL endpoint: https://{functionapp-url}/api/product/{id}

Request method: DELETE

As we have discussed the work of all the HTTP-triggered functions that you need

for the proof concept along with their URL endpoints and request method, let’s start

building them.

Open Visual Studio 2019 in your workstation and click “Create a new project.” See

Figure 8-8.

Now select Azure Functions as the project template for the project and click Next.

See Figure 8-9.

Figure 8-8.  Create a new project

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

175

You will be required to fill in the project name, project location, and solution name

on this screen. Once you have filled in all of these details, click Next. See Figure 8-10.

Figure 8-9.  Select Azure Functions as the project template

Figure 8-10.  Enter the project information

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

176

As an Azure function can have only the trigger type, select “Http trigger” as the

trigger type, and set Authorization Level to Anonymous as it is a proof of concept. Set the

runtime and storage account to Azure Function V3 (.NET Core) and Storage Emulator,

respectively. Once you have filled in all the required information as mentioned, click

Create. See Figure 8-11.

You may wonder what authorization levels are and why you need them in an HTTP-

triggered Azure function. The authorization level defines whether or not you need to

send a function/master key in the payload of the request to invoke the function. This

helps us to restrict access from unauthorized users to invoke your function.

There are three types of authorization levels for HTTP-triggered Azure functions as

follows:

•	 Anonymous: Any function that has its authorization level set as

Anonymous can be invoked by any users without the need to provide

an API key in the request payload.

Figure 8-11.  Select the trigger type and authentication level

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

177

•	 Function: By defining the authentication level of your HTTP-

triggered Azure function as a function, you require a function-specific

key to be provided in the request payload to invoke it.

•	 Admin: With the authentication level set as Admin, you need to send

the master key of your function app in the request payload to invoke

the function.

Note D ue to increased permissions granted in your function app by the master
key, you should not share this key with any third parties or distribute the master
key in client applications. Use it with caution as master keys provide administrative
access and allow you to invoke all other HTTP-triggered functions present in your
function app without requiring the function key. They also have the power to manually
invoke Azure functions with other trigger types like timer-triggered functions.

Visual Studio will create a function project out of the box along with an HTTP-

triggered function named Function1, which has the logic to return a response of “Hello”

along with the name passed in the query string or the request body.

Let’s delete this function as you don’t want this function as part of your proof of

concept. Now, open the local.settings.json file and add your database’s connection

string here as a key-value pair, as shown in Listing 8-2. As mentioned earlier, you can find

the connection string in the Overview section of your resource. Alternatively, you can use

the Connection Strings menu item in the sidebar of your resource’s window in the Azure

portal. In this example, we will be using the connection string to connect with the instance

of Azure SQL Database from the Azure functions to perform necessary operations.

Listing 8-2. local.settings.json

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "DBConnectionString": "[Enter your connection string here]"

 }

}

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

178

As you have added the connection string in the local.setting.json file to your

project, you need to install the System.Data.SqlClient NuGet package to interact with

your Azure SQL Database instance. Use the command shown in Listing 8-3 to install it

using the Package Manager Console.

Listing 8-3.  Install the System.Data.SqlClient Package

Install-Package System.Data.SqlClient -Version 4.8.2

After installing the NuGet package, right-click the solution and click Add ➤ Class

to create a Product class representing the records of your ProductInformation table,

as shown in Listing 8-4. We will use this class to perform various operations in your

functions.

Listing 8-4.  Product Class

public class Product

 {

 public int Product_ID { get; set; }

 public string Product_Name { get; set; }

 public string Product_Description { get; set; }

 public int Product_Price { get; set; }

 public int Product_Quantity { get; set; }

 public string Category_Name { get; set; }

 }

After creating the Product class, right-click the solution and click Add ➤ New Azure

Function to create your Azure function. Azure Functions will be selected as the type.

Enter the name of the function as CreateProduct and click Add. See Figure 8-12.

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

179

You will be prompted to select the trigger type and authorization level of your

CreateProduct function. Select “Http trigger” as the trigger type and Anonymous as the

authorization level. Once you have selected the trigger type and authorization level, click

Add to configure the function. See Figure 8-13.

Figure 8-12.  Create a new Azure function

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

180

Visual Studio will generate a default Azure function out of the box that does the same

task as described for function1 earlier. You will configure the route of this function by

overriding the route parameter of the HttpTrigger attribute’s value as product and pass

POST as the only request method, as you will be using the function as your serverless

API to create a new resource. By mentioning only POST as the request method in the

HttpTriggerAttribute constructor, you are restricting this function to be invoked only

by POST requests.

Now you will read the JSON payload present in the request body and deserialize

it to an object called productData with a Product type. Now you will use the

GetEnvironmentVariable method of the Environment class to get the value of your

connection string from the local.settings.json file and then use it to create a

SQL connection instance called connection. Now you will create a cmd object of the

SqlCommand type and pass queryString as the parameter. queryString is a variable

containing the T-SQL query to insert the record into the ProductInformation table

of your database. You pass the values to the SqlParameterCollection by using the

productData object, which contains the product data sent in the request body of

Figure 8-13.  Configure the CreateProduct function

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

181

the request payload. After you add the values of the parameters, you will call the

ExecuteNonQuery method to execute the T-SQL statement and finally use the close

method of the connection object to close the connection.

You add the whole business logic of your CreateProduct function inside a try-catch

block. This will ensure that your function handles exceptions in a graceful manner. If

everything goes well, you will return a 200 response code along with the productData

object to the user. If you get an exception, you will return a 400 response code along

with the error message to the user. Refer to Listing 8-5 for the entire code for the

CreateProduct function.

Listing 8-5.  CreateProduct Function Code

using System;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{

 public static class CreateProduct

 {

 [FunctionName("CreateProduct")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "post", Route =

"product")] HttpRequest req,

 ILogger log)

 {

 log.LogInformation("C# HTTP trigger function processed a request.");

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

182

 try

 {

 �string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

 �Product productData = JsonConvert.DeserializeObject<Product>

(requestBody);

 �using (SqlConnection connection = new SqlConnection

(Environment.GetEnvironmentVariable("DBConnectionString")))

 {

 �string queryString = @"INSERT INTO [ProductInformation]

(Product_Name,Product_Description,Product_Price,

Product_Quantity,Category_Name)

 �VALUES(@Product_Name,@Product_Description,

@Product_Price,@Product_Quantity,

@Category_Name)";

 using (SqlCommand cmd = new SqlCommand(queryString))

 {

 �cmd.Parameters.AddWithValue("@Product_Name",

productData.Product_Name);

 �cmd.Parameters.AddWithValue("@Product_Description",

productData.Product_Description);

 �cmd.Parameters.AddWithValue("@Product_Price",

productData.Product_Price);

 �cmd.Parameters.AddWithValue("@Product_Quantity",

productData.Product_Quantity);

 �cmd.Parameters.AddWithValue("@Category_Name",

productData.Category_Name);

 cmd.Connection = connection;

 connection.Open();

 cmd.ExecuteNonQuery();

 connection.Close();

 }

 }

 return new OkObjectResult(productData);

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

183

 }

 catch (Exception ex) {

 return new BadRequestObjectResult(ex.Message);

 }

 }

 }

}

Note  While building serverless APIs using HTTP-triggered functions, avoid long-
running processes as you will get a request timeout response if your HTTP-triggered
function does not respond to the request in 230 seconds. Irrespective of the function
timeout setting, the timeout for an HTTP-triggered function to give a response is 230
seconds. If you want to build a function to execute long-running processes, try using
a durable functions async pattern or return an immediate response to the client by
passing the request payload to a queue for further processing.

As you have created the CreateProduct function, let’s create your next function,

called UpdateProduct, that you will use to update the product details of an existing

product in your ProductInformation table. The process is the same as creating the

CreateProduct function. After you have created the UpdateProduct function, override

the route parameter of the HttpTrigger attribute as product and pass PUT as the only

request method for this function, as you are going to modify all the values of existing

resources by using the values specified in the request body of the request payload.

As you did with the CreateProduct function, let’s read the data from the request

body of the request payload and deserialize it into a object called productData of

the Product type. Then use a block of ADO.NET code similar to the one used in the

CreateProduct function. The few differences here are the query string and the addition

of a new parameter to the SqlParameterCollection called Product_ID. You will modify

the query string with a T-SQL statement to update all the records of a product depending

on the value Product_ID. Similar to the CreateProduct function, you place your

business logic of the function in a try-catch block to handle exceptions. If your function

runs successfully without getting any error or exception, it will return a 200 response

code along with the updated product data. Refer to Listing 8-6 for the entire code for the

UpdateProduct function.

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

184

Listing 8-6.  UpdateProduct Function Code

using System;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{

 public static class UpdateProduct

 {

 [FunctionName("UpdateProduct")]

 public static async Task<IActionResult> Run(

 ��[HttpTrigger(AuthorizationLevel.Anonymous, "put", Route =

"product")] HttpRequest req,

 ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function processed a

request.");

 try

 {

 �string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

 �Product productData = JsonConvert.DeserializeObject<Product>

(requestBody);

 �using (SqlConnection connection = new SqlConnection

(Environment.GetEnvironmentVariable("DBConnectionString")))

 {

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

185

 �string queryString = @"UPDATE [dbo].[ProductInformation]

SET [Product_Name] = @Product_Name,[Product_

Description] = @Product_Description,[Product_Price]

= @Product_Price,[Product_Quantity] = @Product_

Quantity,[Category_Name] = @Category_Name WHERE

[Product_ID] = @Product_ID";

 using (SqlCommand cmd = new SqlCommand(queryString))

 {

 �cmd.Parameters.AddWithValue("@Product_Name",

productData.Product_Name);

 �cmd.Parameters.AddWithValue("@Product_Description",

productData.Product_Description);

 �cmd.Parameters.AddWithValue("@Product_Price",

productData.Product_Price);

 �cmd.Parameters.AddWithValue("@Product_Quantity",

productData.Product_Quantity);

 �cmd.Parameters.AddWithValue("@Category_Name",

productData.Category_Name);

 �cmd.Parameters.AddWithValue("@Product_ID",

productData.Product_ID);

 cmd.Connection = connection;

 connection.Open();

 cmd.ExecuteNonQuery();

 connection.Close();

 }

 }

 return new OkObjectResult(productData);

 }

 catch (Exception ex)

 {

 return new BadRequestObjectResult(ex.Message);

 }

 }

 }

}

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

186

Now that you have created the CreateProduct and UpdateProduct functions, let’s

create the DeleteProduct function in a similar way. Since the work of this function is

to delete records depending on the value of the ID passed in the route, you will need to

override the route parameter of the HttpTrigger attribute as product/{id:int} and

pass DELETE as the only request method for this function. After you implement these

changes, you need to add a new parameter called id of the Integer type in your run

method. The value passed in the function route will be stored in this id variable. Let’s go

into the method body of your function. Unlike the previous functions, you don’t use the

data from the request payload here. You will be deleting the record of the product from

your ProductInformation table depending on the id value passed in the function route

using ADO.NET.

Most of the ADO.NET code for the DeleteProduct function to interact with

the database will be similar with the other functions. The notable difference is the

queryString that you will pass to the cmd object of the SqlCommand type along with the

number of parameters used. You define a simple delete statement in the queryString

variable to delete a record whose Product_ID is equal to the value of id passed in the

function route. Like the previous two functions, you wrap the business logic in a

try-catch block to handle exceptions graciously. If your function is able to delete the

records without getting any exception, then it will return a 200 response code with a

message stating Product records were deleted successfully; if there is an exception, then

it will give a 400 response code along with the error. Refer to Listing 8-7 for the entire

code of the DeleteProduct function.

Listing 8-7.  DeleteProduct Function Code

using System;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

187

namespace ServerlessAPIs.Product

{

 public static class DeleteProduct

 {

 [FunctionName("DeleteProduct")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "delete", Route =

"product/{id:int}")] HttpRequest req,int id, ILogger log)

 {

 log.LogInformation("C# HTTP trigger function processed a request.");

 try

 {

 �using (SqlConnection connection = new SqlConnection

(Environment.GetEnvironmentVariable("DBConnectionString")))

 {

 �string queryString = @"DELETE FROM [dbo].

[ProductInformation] WHERE [Product_ID] = @Product_ID";

 using (SqlCommand cmd = new SqlCommand(queryString))

 {

 cmd.Parameters.AddWithValue("@Product_ID", id);

 cmd.Connection = connection;

 connection.Open();

 cmd.ExecuteNonQuery();

 connection.Close();

 }

 }

 �return new OkObjectResult("Product record were deleted

successfully ");

 }

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

188

 catch (Exception ex)

 {

 return new BadRequestObjectResult(ex.Message);

 }

 }

 }

}

Now that you have created the CreateProduct, UpdateProduct, and DeleteProduct

functions, you are left with two more functions to build, i.e., GetProducts and

GetProductById. Both these functions share the common objective of getting the

product data from the ProductInformation table. The difference is that GetProducts

needs to fetch all the records present in the ProductInformation table, while

GetProductById only needs the records for a particular product ID from the

ProductInformation table.

Let’s create the GetProducts function now like you created the previous functions

in Visual Studio 2019. Because you want the URL endpoint for this function to be

api/product, you need to override the route parameter of the HttpTrigger attribute as

product and pass GET as the only request method since you want to fetch the details of

an existing resource.

In this function, you don’t need any data from the request payload or from the

function route to run the function. You will write similar ADO.NET code as in the

previous function to interact with the database with the cmd object of the SqlCommand

type but use a different queryString that contains a T-SQL query to fetch all the records

present in the ProductInformation table along with using the ExecuteReader method

instead of ExecuteNonQuery method this time. We will be storing the data returned after

the ExecuteNonQuery method in a variable called oReader of SqlDataReader type. After

this, we iterate through the data present in the oReader object and store the records

present inside the oReader object in an object called productData, which is a list of

products.

Like your previous functions, you have added your business logic inside a try-catch

to handle exceptions graciously. If your function runs without getting any exception,

then it will return a 200 response code along with a list of products, and if there is an

exception, then it will give a 400 response code along with the error. Refer to Listing 8-8

for the entire code of the GetProducts function.

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

189

Listing 8-8.  GetProducts Function Code

using System;

using System.Collections.Generic;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{

 public static class GetProduct

 {

 [FunctionName("GetProduct")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "get",

Route = "product")] HttpRequest req,

 ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function processed a

request.");

 try

 {

 List<Product> productData = new List<Product>();

 �using (SqlConnection connection = new SqlConnection

(Environment.GetEnvironmentVariable("DBConnectionString")))

 {

 string queryString = @"SELECT [Product_ID]

 ,[Product_Name]

 ,[Product_Description]

 ,[Product_Price]

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

190

 ,[Product_Quantity]

 ,[Category_Name]

 FROM [dbo].[ProductInformation]";

 SqlCommand cmd = new SqlCommand(queryString, connection);

 connection.Open();

 using (SqlDataReader oReader = cmd.ExecuteReader())

 {

 while (oReader.Read())

 {

 Product productInfo = new Product();

 productInfo.Product_ID = (int)oReader["Product_ID"];

 �productInfo.Product_Name = oReader["Product_

Name"].ToString();

 �productInfo.Product_Description = oReader

["Product_Description"].ToString();

 �productInfo.Product_Price = (int)oReader

["Product_Price"];

 �productInfo.Product_Quantity = (int)oReader

["Product_Quantity"];

 �productInfo.Category_Name = oReader["Category_

Name"].ToString();

 productData.Add(productInfo);

 }

 connection.Close();

 }

 }

 return new OkObjectResult(productData);

 }

 catch (Exception ex)

 {

 return new BadRequestObjectResult(ex.Message);

 }

 }

 }

}

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

191

You have created four of the five serverless APIs required to complete your proof of

concept. The last one remaining is GetProductById. As mentioned earlier, this function

will need to fetch data for a particular product from the ProductInformation table of

your database depending on the Product_ID value passed in the function route.

Let’s create the GetProductById function like you created the rest of the functions

using Visual Studio. As you wanted to pass the Product_ID value to this function using

the function route, you will have to override the route parameter of the HttpTrigger

attribute as product/{id:int} and pass GET as the only request method. After making

these changes, you need to add a parameter id of the Integer type to store the value

of the Product_ID passed in the function route as was the case in the DeleteProduct

function.

The business logic for GetProductById and GetProducts is similar, so let’s copy the

business logic of the GetProducts function and paste it inside the run method of the

GetProductById function. You need to make a few changes in the function’s business

logic now to add the desired functionality in this function.

The few changes are the addition of a where condition in the queryString variable

to filter the records and fetch the record whose Product_ID matched with the value

of id passed in the function route and the addition of a parameter and its value to the

SqlParameterCollection of the cmd object of the SqlCommand type. Here you use the

ExecuteReader method to get the record from the Azure SQL Database instance, as was

the case in the GetProducts function. But you are expecting a single product record here

instead of multiple records as the Product_ID is a unique identifier for the products; thus,

you can have only one product per Product_ID. We don’t need to any other changes in

the business logic. If your function runs without any exceptions, then it will return a 200

response code along with the product information of the product whose Product_ID

matched with the value of id passed in the function route. Refer to Listing 8-9 for the

entire code of the GetProductById function.

Listing 8-9.  GetProductById Function Code

using System;

using System.Collections.Generic;

using System.Data.SqlClient;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

192

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace ServerlessAPIs.Product

{

 public static class GetProductById

 {

 [FunctionName("GetProductById")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "get", Route =

"product/{id:int}")] HttpRequest req, int id, ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function processed a

request.");

 try

 {

 List<Product> productData = new List<Product>();

 �using (SqlConnection connection = new SqlConnection

(Environment.GetEnvironmentVariable("DBConnectionString")))

 {

 string queryString= @"SELECT [Product_ID]

 ,[Product_Name]

 ,[Product_Description]

 ,[Product_Price]

 ,[Product_Quantity]

 ,[Category_Name]

 �FROM [dbo].[ProductInformation] WHERE

[Product_ID] = @Product_ID";

 �SqlCommand cmd = new SqlCommand(queryString,

connection);

 cmd.Parameters.AddWithValue("@Product_ID", id);

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

193

 connection.Open();

 using (SqlDataReader oReader = cmd.ExecuteReader())

 {

 while (oReader.Read())

 {

 Product productInfo = new Product();

 �productInfo.Product_ID = (int)oReader

["Product_ID"];

 �productInfo.Product_Name = oReader["Product_

Name"].ToString();

 �productInfo.Product_Description = oReader

["Product_Description"].ToString();

 �productInfo.Product_Price = (int)oReader

["Product_Price"];

 �productInfo.Product_Quantity = (int)oReader

["Product_Quantity"];

 �productInfo.Category_Name = oReader["Category_

Name"].ToString();

 productData.Add(productInfo);

 }

 connection.Close();

 }

 }

 return new OkObjectResult(productData);

 }

 catch (Exception ex)

 {

 return new BadRequestObjectResult(ex.Message);

 }

 }

 }

}

And with this you have developed all the serverless APIs required to complete the

proof of concept.

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

194

Note  We can use ORM frameworks like EFCore and micro-ORMs like Dapper
to interact with the database too. Azure Functions supports the use of such ORM
frameworks in addition to supporting ADO.NET.

�Testing the Serverless APIs for the Proof of Concept
Now that you have developed all the serverless APIs required for the proof of concept,

let’s perform a sanity test on the functionalities of your Azure functions before

submitting them to your manager. We will be using Postman to send requests to your

serverless APIs.

Before you open Postman and start sending requests to your endpoints, you need to

run your function project. Run your function project locally in Visual Studio by clicking

the highlighted region in Figure 8-14.

Figure 8-14.  Start the function project

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

195

Now Visual Studio will start the Azure Functions Core Tools that will host all your

HTTP-triggered functions (serverless APIs) and display their endpoints along with the

supported request method type for each of them and the function name, as shown in

Figure 8-15.

As your function is up and running now, let’s open Postman and create a collection.

Inside the collection, add a request for CreateProduct. Now define the request method as

POST, paste the endpoint of the CreateProduct function as shown in the Azure Functions

Core Tools, and then click the Body tab to add the product information in the payload in

key-value pairs. After you have configured all this information in the request, click Send to

send a request to the CreateProduct API; the API will use the information shared in the

request payload to create a new record in the ProductInformation table and return a 200

response code along with the product information, as shown in Figure 8-16.

Figure 8-15.  List of functions and their endpoints

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

196

Similarly, to send a request to the UpdateProduct function, create a new request in

the requests collection. Set the request method as PUT and paste the URL endpoint

of the function there by copying it from Azure Functions Core Tools. Go to the tabs and

define the request payload by mentioning all the product information in key-value

pairs, as shown in Figure 8-17. Once you configure all these options, click Send to send

a request to your UpdateProduct function, which will use the request payload to update

the records of the product in the ProductInformation table.

Note T o call these functions using their endpoints from an application, you will
have to enable CORS and define your application’s domain name and ports. This is
to let the function know that it is OK to get requests from your application. You can
configure CORS for your function project by specifying the CORS property of Host
in local.settings.json, as shown in Listing 8-10. We have defined the value
of the CORS property with a wildcard (*), which tells the function project that it can

Figure 8-16.  Response from CreateProduct function

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

197

be called by any application irrespective of the domain it is run on. This is OK to
be used in a development environment, but you should define your application’s
URL here, which is going to make a call to your functions while deploying it in the
production environment.

Listing 8-10.  Define the CORS Property in local.settings.json

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "DBConnectionString": "[Enter your connection string here]"

 },

 "Host": {"CORS": "*"}

}

Figure 8-17.  Response from the UpdateProduct function

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

198

Now let’s send a request to the DeleteProduct function and create a new request in

the request collection. Set the request method to DELETE and paste in the endpoint of

the DeleteProduct function. We need to specify the value of Product_ID in the function

route. Once you define the endpoint and request method, click Send to invoke the

DeleteProduct function. If the function runs without getting any exceptions, you should

get a 200 response code along with a message stating the product record was deleted

successfully in the response body, as shown in Figure 8-18.

Figure 8-18.  Response from the DeleteProduct function

Note  You can write unit tests for your Azure functions using unit test frameworks
for C# like MSTest, NUnit, or XUnit. Refer to https://microsoft.github.io/
AzureTipsAndTricks/blog/tip196.html to learn more.

Similar to the DeleteProduct request, you don’t need to specify anything in the

request body of the request payload for the GetProductById function, but you do need

specify the Product_ID in the function route as you did in the case of the DeleteProduct

request. Let’s create a request in the request collection for GetProductById. Specify the

request method type for this request as GET and define the function route along with

the Product_ID. Once you define the request method and function route, click Send to

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

https://microsoft.github.io/AzureTipsAndTricks/blog/tip196.html
https://microsoft.github.io/AzureTipsAndTricks/blog/tip196.html

199

invoke the GetProductById function. If your function works well without any exceptions,

you should receive a 200 response code and the product details in the response body, as

shown in Figure 8-19.

Let’s create the request in the request collection for sending a request to the

GetProducts function. Unlike the previous functions, GetProducts does not take any

value in the request body or in the function route. We need to set the request method

type as GET and then paste the endpoint of the GetProducts function. Now click Send

to invoke the GetProducts function. We will get a response code of 200 and all the

records present in the ProductInformation table in the response body if your function is

executed without getting any exception, as shown in Figure 8-20.

Figure 8-19.  Response from the GetProductById function

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

200

Note A s you are using your Azure SQL Database instance to be on a serverless
tier, you can get an exception while creating the first connection in your function
due to the cold-start issue. This can also occur if your database was idle for a long
time. However, this will be the case only for the first time you create a connection
to interact with the database after it’s been a long time.

As you test all your serverless APIs’ functionality in Postman, you have completed

your proof of concept successfully and share it with your manager.

Figure 8-20.  Response from the GetProducts function

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

201

�Summary
In this chapter, you learned how to create serverless APIs with the help of HTTP-

triggered Azure functions using Visual Studio 2019 by building a proof of concept to

solve a use case. You developed multiple serverless APIs to perform create, read, update,

and delete operations. While building the proof of concept, you learned ways to interact

with an instance of Azure SQL Database from your function and learned how to test your

HTTP-triggered functions using Postman.

The following are the key takeaways from this chapter:

•	 Azure SQL Database is a fully managed platform-as-a-service

database engine.

•	 Azure SQL Database can be highly scalable and cost effective while

running on a serverless compute tier.

•	 You can create serverless APIs using HTTP-triggered functions.

•	 You can customize the HTTP-triggered function to run on receiving

requests from specific request methods.

•	 You can interact with an instance of Azure SQL Database from your

Azure functions using ADO.NET or ORM frameworks like EF Core.

Chapter 8 Building Serverless APIs Using Azure Functions and Azure SQL

203
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_9

CHAPTER 9

Serverless API Using
Azure Functions and
Azure Cosmos DB
Azure Cosmos DB is a popular NoSQL database and is widely used in all new-generation

applications. It is highly available, it scales rapidly, and the data stored can be globally

distributed. You may have scenarios where an Azure function has to work on data stored

in Azure Cosmos DB. You can achieve this functionality using the Azure Cosmos DB

input and output bindings.

In the previous chapter, you learned all the essential concepts of the Azure SQL

Database binding. You built serverless APIs using the Azure Functions binding for

Azure SQL Database. In this chapter, you will explore how to implement serverless APIs

using Azure Functions and Azure Cosmos DB. You will use both the Azure Cosmos DB

function binding and the Azure Cosmos DB SDK approach.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Azure Cosmos DB and Azure

Functions:

•	 Introduction to Azure Cosmos DB and its use cases

•	 Getting started with the Azure Functions Cosmos DB trigger by

building a simple application

https://doi.org/10.1007/978-1-4842-7122-3_9#DOI

204

•	 Building an HTTP-triggered Azure function to perform CRUD

operations in Azure Cosmos DB using bindings

•	 Leveraging the Azure Cosmos DB SDK to interact with Cosmos DB

from Azure Functions

�Objectives
After studying this chapter, you will be able to do the following:

•	 Implement Azure Cosmos DB triggers and bindings for Azure

Functions

•	 Use the Azure Cosmos DB SDK with Azure Functions

�Introduction to Azure Cosmos DB and Its Use Cases
Modern applications require databases to be constantly available, be scalable, have low

latency, and be highly responsive. Azure Cosmos DB addresses all these concerns and

is a perfect fit for all modern application scenarios. Azure Cosmos DB ensures business

continuity with SLA-backed availability and offers security at an enterprise level. It

supports replication across the globe in no time and is the best fit for mission-critical

applications that always need to be available and responsive to their users.

Azure Cosmos DB is a multimodel NoSQL database and supports the following data

models:

•	 Key-value

•	 Column-family

•	 Document

•	 Graph

Table 9-1 lists the APIs that can be used to work with data stored in these data

models.

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

205

Azure Cosmos DB is a fully managed offering from Azure, and you do not need

to worry about managing the underlying infrastructure hosting these databases. Any

application such as web, mobile, gaming, or IoT-based applications with the following

requirements can use Azure Cosmos DB as the data store:

•	 Massive amount of reads and writes at a global scale

•	 Near real-time data consistency

•	 Global replication

•	 Guaranteed high availability

•	 High throughput

•	 Low latency

Azure functions can interact with Azure Cosmos DB using triggers and bindings.

You do not need to write much code or write declarative configurations to use Azure

Cosmos DB.

Note A zure Cosmos DB is a highly available and multimodel database engine. It
supports the MongoDB, Gremlin, SQL Core, and Casandra APIs. It can scale rapidly
and replicate data around the world quickly.

Table 9-1.  Azure Cosmos DB Data Models

and Supported APIs

Data Model API

Key-value Table API

Column-family Casandra

Document SQL

Graph Gremlin

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

206

�Getting Started with Azure Function Cosmos DB
Triggers by Building a Simple Application
Now let’s implement an Azure function that gets triggered whenever you add an item in

your Cosmos DB database. Let’s first provision a Cosmos DB resource using the Azure

portal. Go to the Azure portal and click “Create a resource.” See Figure 9-1.

Click the Databases tab. All the database offerings will be listed here. Click Azure

Cosmos DB. See Figure 9-2.

Figure 9-1.  Click “Create a resource”

Figure 9-2.  Click Azure Cosmos DB

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

207

Provide the subscription where you need to create the Cosmos DB resource, the

name of the Cosmos DB account, and the location. Provide Core (SQL) as the API. Click

“Review + create.” See Figure 9-3.

Click Create. This action will spin up the Azure Cosmos DB resource. See Figure 9-4.

Figure 9-3.  Click “Review + create”

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

208

Once the Azure Cosmos DB resource gets created, click “Go to resource.” See

Figure 9-5.

Figure 9-4.  Click Create

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

209

You will be navigated to the Azure Cosmos DB resource that you created. On the

Overview tab, click + Add Container. See Figure 9-6.

Figure 9-5.  Click “Go to resource”

Figure 9-6.  Click + Add Container

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

210

You will be navigated to the Data Explorer tab. Click New Container. See Figure 9-7.

Provide the database ID and scroll down. See Figure 9-8.

Figure 9-7.  Click New Container

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

211

Provide the container ID and scroll down. See Figure 9-9.

Figure 9-8.  Provide the database ID

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

212

Provide the partition key and click OK. The container will get created. You will add

an item to the container later once the Azure function is ready. See Figure 9-10.

Figure 9-9.  Provide the container ID

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

213

Now let’s build the Azure function that gets triggered whenever you add an item

in the Cosmos DB instance. Open Visual Studio and click “Create a new project.”

See Figure 9-11.

Figure 9-10.  Provide the partition key

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

214

Select Azure Functions and click Next. See Figure 9-12.

Figure 9-11.  Click “Create a new project”

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

215

Provide the name of the function and click Create. See Figure 9-13.

Figure 9-12.  Click Next

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

216

Select Cosmos DB Trigger. Provide the name of the connection string that you will

add in the local.settings.json file. Provide the database ID and container ID values

for the Cosmos DB instance that you created earlier for the database name and container

name, respectively. Click Create. See Figure 9-14. The Azure function solution will be

created.

Figure 9-13.  Provide the project details

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

217

Go to the local.settings.json file and add the connection string, as shown in

Listing 9-1. You need to provide the connection string’s name the same way you did

while creating the Azure function solution in Visual Studio.

Listing 9-1.  local.settings.json Code

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "cosmosDbConn": "[Connection String Value from Azure portal]"

 }

}

Figure 9-14.  Select the Cosmos DB trigger

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

218

Navigate to the Keys tab of Cosmos DB in the Azure portal and copy the connection

string’s value. Provide the value of the connection string in the local.settings.json

file. See Figure 9-15.

Go to Function1.cs and replace the contents with the code shown in Listing 9-2.

The Run method’s input parameter will capture the details of the items that either got

added to or got modified in Azure Cosmos DB and triggered the Azure function. You add

code to log the document ID and the JSON document for the item that you will add in

Cosmos DB.

Listing 9-2.  Function1.cs Code

using System;

using System.Collections.Generic;

using Microsoft.Azure.Documents;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Logging;

Figure 9-15.  Connection string value for Cosmos DB

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

219

namespace FuncCosmosDB

{

 public static class Function1

 {

 [FunctionName("Function1")]

 public static void Run([CosmosDBTrigger(

 databaseName: "sampledb",

 collectionName: "samplecontainer",

 ConnectionStringSetting = "cosmosDbConn",

 LeaseCollectionName = "leases",

 CreateLeaseCollectionIfNotExists = true)]

 IReadOnlyList<Document> input, ILogger log)

 {

 if (input != null && input.Count > 0)

 {

 log.LogInformation("Documents modified " + input.Count);

 log.LogInformation("First document Id " + input[0].Id);

 log.LogInformation("Document " + input[0].ToString());

 }

 }

 }

}

Note  You need to provide a lease name for the trigger. Multiple Azure functions
can get triggered by the Cosmos DB trigger. The lease for a trigger makes the
invocation unique per function.

Now run the Azure function and navigate back to the Cosmos DB instance in the

Azure portal. Go to the Data Explorer, expand the container that you created, and click

Items. See Figure 9-16.

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

220

Click New Item. See Figure 9-17.

Provide the JSON document for the item and click Save. See Figure 9-18.

Figure 9-17.  Click New Item

Figure 9-16.  Go to the Data Explorer

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

221

Your Azure function gets triggered. You can see that the document ID and the

document JSON get printed in the debug console. See Figure 9-19.

Figure 9-18.  Add an item

Figure 9-19.  Function execution output

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

222

�Build an HTTP-Triggered Azure Function to
Perform CRUD Operations on Azure Cosmos DB
Using Bindings
Now let’s build an Azure function that gets invoked using an HTTP trigger, reads items

from the Cosmos DB instance using an input binding, processes these items, and writes

the processed items back to the Cosmos DB instance using an output binding.

Let’s create a new Azure function in the same project in Visual Studio. Right-click the

project, click Add, and then click New Azure Function. See Figure 9-20.

Provide the name of the Azure function as Function2.cs and click Create. Then

you will get the screen shown in Figure 9-21. Select “Http trigger” and click OK. See

Figure 9-21.

Figure 9-20.  Add a new function

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

223

As a prerequisite, add some items in Cosmos DB in the same container that you

created earlier. Let’s go to the Function2.cs code and use the code shown in Listing 9-3.

You add a class called SampleData that represents the items stored in Cosmos DB. The

item’s input parameter for the Run method is decorated with the CosmosDB attribute.

This attribute takes the database name, container name, and search query. The items

returned by the query get populated in the items parameter. You can populate new data

of type SampleData in the outputItems input parameter for the Run method, and those

items get added to the Cosmos DB instance. You invoke this function using the HTTP

trigger and pass the key as the route parameter. All the items that have keys, the same

as that you are passing as a route parameter, will be retrieved. You then iterate through

each of these items, process them, and add a new processed item in the Cosmos DB

instance.

Listing 9-3.  Function2.cs Code

using System.Collections.Generic;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

Figure 9-21.  Select “Http trigger”

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

224

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace FuncCosmosDB

{

 public static class Function2

 {

 [FunctionName("Function2")]

 public static async Task<IActionResult> Run(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post",

 Route = "search/{key}")] HttpRequest req,

 [CosmosDB(

 databaseName: "sampledb",

 collectionName: "samplecontainer",

 ConnectionStringSetting = "cosmosDbConn",

 SqlQuery = "SELECT * FROM c where c.key={key} order by

 c.id")]IEnumerable<SampleData> items,

 [CosmosDB(

 databaseName: "sampledb",

 collectionName: "samplecontainer",

 ConnectionStringSetting =

 "cosmosDbConn")]IAsyncCollector<SampleData> outputItems,

 ILogger log)

 {

 log.LogInformation("C# HTTP trigger function processed a

 request.");

 // Read and process each item

 foreach (SampleData item in items)

 {

 log.LogInformation("Processing {0}-{1}-{2}-{3}",item.Id,

 item.PartitionKey, item.Key,item.Value);

 //Process the item

 string newId = item.Id + " - Processed";

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

225

 SampleData data = new SampleData() { Id = newId, PartitionKey =

 item.PartitionKey, Key = item.Key, Value = item.Value };

 //Insert a the processed Item as a new Item in the

 //Azure Cosmos DB

 await outputItems.AddAsync(data);

 }

 // Write the processed item to the database

 return new OkResult();

 }

 }

 public class SampleData

 {

 [JsonProperty("id")]

 public string Id { get; set; }

 [JsonProperty("samplepartitionkey")]

 public string PartitionKey { get; set; }

 [JsonProperty("key")]

 public string Key { get; set; }

 [JsonProperty("value")]

 public string Value { get; set; }

 }

}

Execute the Azure function solution and trigger the Azure function using the

following link:

http://localhost:7071/api/search/city

All the items with keys as the city will get retrieved, processed, and added back to the

Cosmos DB instance. See Figure 9-22.

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

226

�Leverage the Azure Cosmos DB SDK to Interact
with Cosmos DB from Azure Functions
You can create stored procedures, user-defined functions, and database triggers in

Azure Cosmos DB. Triggers and bindings are excellent mechanisms to interact with

Azure Cosmos DB data. However, they do not support invoking Azure Cosmos DB stored

procedures, user-defined functions, and database triggers. You need to use the Azure

Cosmos DB SDK to achieve this functionality. You can use the Azure Cosmos DB SDK to

perform all the CRUD operations for the Azure Cosmos DB instance.

Let’s create a stored procedure for the container that you created earlier and call

that stored procedure from the Azure function. Go to the Data Explorer tab for the Azure

function in the Azure portal. Hover your mouse over the container you created and click

the three dots (...). See Figure 9-23.

Figure 9-22.  Processed items in Cosmos DB

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

227

Click New Stored Procedure. See Figure 9-24.

Figure 9-23.  Click the three dots

Figure 9-24.  Click New Stored Procedure

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

228

The default stored procedure is generated. Listing 9-4 shows the code for the default

stored procedure. You can search the items using the partition key and return the first

item from the search result using this stored procedure.

Listing 9-4.  Generated Stored Procedure in the Azure Portal

// SAMPLE STORED PROCEDURE

function sample(prefix) {

 var collection = getContext().getCollection();

 // Query documents and take 1st item.

 var isAccepted = collection.queryDocuments(

 collection.getSelfLink(),

 'SELECT * FROM root r',

 function (err, feed, options) {

 if (err) throw err;

 // Check the feed and if empty, set the body to 'no docs found',

 // else take 1st element from feed

 if (!feed || !feed.length) {

 var response = getContext().getResponse();

 response.setBody('no docs found');

 }

 else {

 var response = getContext().getResponse();

 var body = { prefix: prefix, feed: feed[0] };

 response.setBody(JSON.stringify(body));

 }

 });

 �if (!isAccepted) throw new Error('The query was not accepted by the

server.');

}

Provide a name for the stored procedure and click Save. See Figure 9-25.

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

229

Now let’s go to the Visual Studio Azure functions project that you created earlier

and add a new HTTP-triggered function named Function3. Add the NuGet package

Microsoft.Azure.Cosmos to the project. Put the code shown in Listing 9-5 in

Function3.cs. The ExecuteStoredProcedureAsync method invokes the stored

procedure and gets the stored procedure output.

Listing 9-5.  Function3.cs Code

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.Cosmos;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace FuncCosmosDB

{

 public static class Function3

 {

Figure 9-25.  Save the stored procedure

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

230

 [FunctionName("Function3")]

 public static async Task<IActionResult> Run(

 [HttpTrigger(AuthorizationLevel.Function, "get", "post", Route =

 null)] HttpRequest req,

 ILogger log)

 {

 log.LogInformation("C# HTTP trigger function processed a

 request.");

 string _endpointUri = "Endpoint URI from Azure Portal";

 string _primaryKey = "Primary Key from Azure Portal";

 // Create Cosmos DB Client

 �CosmosClient _client = new CosmosClient(_endpointUri,

_primaryKey);

 // �Execute Stored Procedure. Pass the Partition Key value

that you

 // need to query

 var result = await _client.GetContainer("sampledb",

 "samplecontainer").Scripts

 �.ExecuteStoredProcedureAsync<string>

("sp_ReadSampleContainer",

 new PartitionKey("Partition1"),null);

 // Print the item returned by the Stored Procedure

 log.LogInformation("Returned Result : {0}",result.Resource);

 return new OkObjectResult("Success");

 }

 }

}

You can get the primary key and endpoint URI value from the Keys tab in the Cosmos

DB instance in the Azure portal. See Figure 9-26.

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

231

When you execute the Azure function and invoke the function URL, the stored

procedure result will get logged in the debug console.

�Summary
In this chapter, you learned how to work with Cosmos DB triggers and Cosmos DB input

and output bindings using Visual Studio. You developed Azure functions to perform

CRUD operations using Azure Cosmos DB input and output bindings and the Azure

Cosmos DB SDK. You can pass the date, time, and activity you are planning to do during

that time.

The following are the key takeaways from this chapter:

•	 Azure Cosmos DB is a highly available multimodel database. It

supports SQL Core, Gremlin, Mongo DB, and Casandra APIs.

•	 Azure Cosmos DB can scale rapidly and can replicate data across the

globe quickly.

Figure 9-26.  Get the primary key and URI for the Cosmos DB instance

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

232

•	 You can trigger an Azure function using an Azure Cosmos DB trigger.

•	 You can add items to the Azure Cosmos DB instance using a Cosmos

DB output binding.

•	 You can read items from Azure Cosmos DB using a Cosmos DB input

binding.

•	 You can declaratively configure a CosmosDB trigger and binding

without having to write much code.

•	 Visual Studio provides a template to work with Cosmos DB trigger.

•	 You can use the Azure Cosmos DB SDK in the Azure function to

perform CRUD operations and invoke stored procedures, user-

defined functions, and database triggers.

Chapter 9 Serverless API Using Azure Functions and Azure Cosmos DB

233
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_10

CHAPTER 10

Enabling Application
Insights and Azure
Monitor
Once you have developed your Azure function and have deployed it to the production

environment, you must ensure that it is always ready to wake up if triggered and is doing

its job as expected. In fact, you need to keep tabs on any failures and get alerts whenever

the function goes down. You should have enough logs and metrics to debug issues and

unexpected behavior for Azure functions in a production environment. Monitoring helps

you to observe the execution behavior of an Azure function, and logs will provide you

with the proper context in which you can debug Azure function failures and exceptions.

In the previous chapter, you learned how to perform CRUD operations on Azure

Cosmos DB instances from Azure Functions. You explored the Azure Cosmos DB input

and output bindings and the Azure Cosmos DB SDK in the context of Azure Functions.

In this chapter, you’ll explore how to use Application Insights and Azure Monitor with

Azure Functions to gather logs and metrics.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Application Insights and Azure

Monitor and Azure Functions:

•	 Enabling logging using Application Insights

•	 Performing diagnostics for Azure Functions

•	 Monitoring functions and creating alerts

•	 Restricting the number of scaling instances for a function app

https://doi.org/10.1007/978-1-4842-7122-3_10#DOI

234

�Objectives
After studying this chapter, you will be able to do the following:

•	 Implement Application Insights for Azure Functions

•	 Use Azure Monitor for Azure Functions

�Enable Logging Using Application Insights
Azure Functions provides excellent support for logging using Applications Insights. Let’s

create an Azure function with Application Insights enabled using the Azure portal. Then

you can modify the function code to log some information, errors, and traces for the

Azure function. Open the Azure portal and click “Create a new resource.” See Figure 10-1.

Click Compute and then click Function App. See Figure 10-2.

Figure 10-1.  Click “Create a resource”

Chapter 10 Enabling Application Insights and Azure Monitor

235

Provide the basic details for the function. Let’s select .NET and 3.1 as the runtime

stack and the version. Click the Monitoring tab to enable Application Insights for the

Azure function app. See Figure 10-3.

Figure 10-2.  Click Function App

Chapter 10 Enabling Application Insights and Azure Monitor

236

Click Yes to enable Application Insights and provide the name for the Application

Insights resource. You can also use an existing Application Insights resource. Click

“Review + create.” See Figure 10-4.

Figure 10-3.  Provide basic details for the Azure function

Chapter 10 Enabling Application Insights and Azure Monitor

237

Click Create. See Figure 10-5.

Figure 10-4.  Enable Application Insights

Chapter 10 Enabling Application Insights and Azure Monitor

238

Go to the Azure function app once it is created. Now you need to add a function to

the Azure function app. Click the Functions tab and click Add. See Figure 10-6.

Figure 10-5.  Click Create

Chapter 10 Enabling Application Insights and Azure Monitor

239

Select “Http trigger” and click Add. See Figure 10-7.

Figure 10-6.  Add a function

Chapter 10 Enabling Application Insights and Azure Monitor

240

Once the function is created, go into the function and click Code + Test.

See Figure 10-8.

Figure 10-7.  Select “Http trigger”

Chapter 10 Enabling Application Insights and Azure Monitor

241

Replace the code in the run.csx file with the code in Listing 10-1 and save the

file. Here you are using the LogInformation method to log information, the LogError

method to log errors, the LogWarning method to log warnings, and the LogCritical

method to log critical errors.

Listing 10-1.  Function Code with Logging Enabled

#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;

using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{

 // Log Information

 log.LogInformation("This is an Information.");

 // Log Trace

 log.LogError(new Exception(),"This is an Exception");

 // Log Warning

 log.LogWarning("This is a Warning");

Figure 10-8.  Click Code + Test

Chapter 10 Enabling Application Insights and Azure Monitor

242

 // Log Critical Error

 log.LogCritical("This is a Critical error");

 return new OkObjectResult("Demo Complete !!");

}

Click “Get function URL” and browse to the URL in the browser. Now let’s go to

Application Insights and verify whether these logs were added. See Figure 10-9.

Go back to the Azure function app and click the Application Insights tab. Click the

Application Insights resource name that you are using for this function app. You will be

navigated to the Application Insights resource. See Figure 10-10.

Figure 10-9.  Get the function URL

Chapter 10 Enabling Application Insights and Azure Monitor

243

Click the “Transaction search” tab and then click View in Logs. This action will

generate a query using the Kusto Query Language (KQL) to get the logs you have pushed

to Application Insights. See Figure 10-11.

Figure 10-10.  Go to the Application Insights resource

Figure 10-11.  Click View in Logs

Chapter 10 Enabling Application Insights and Azure Monitor

244

Run the generated query, and you will see the logs that you pushed to Application

Insights in the result. See Figure 10-12.

�Perform Diagnostics for Azure Functions
The Azure portal provides a mechanism to auto-diagnose issues with Azure Functions.

If you see that an Azure function is not responding or working as expected, you can

diagnose the issue with ease and figure out what went wrong. Let’s introduce some

errors into the Azure function. Let’s use the same Azure function that you created earlier

for this demonstration. Modify the function code as shown in Listing 10-2. You are using

a method called LogSuperCritical that should throw compilation errors.

Listing 10-2.  Introduce a Compilation Error in the Function Code

#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

Figure 10-12.  Run the query to get the logs

Chapter 10 Enabling Application Insights and Azure Monitor

245

using Microsoft.Extensions.Primitives;

using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{

 //Log Information

 log.LogInformation("This is an Information.");

 //Log Trace

 log.LogError(new Exception(),"This is an Exception");

 //Log Warning

 log.LogWarning("This is a Warning");

 //Introducing Compilation Error

 //There is no method as SuperCritical

 //Should throw compilation error

 log.LogSuperCritical("This is a Critical error")

 return new OkObjectResult("Demo Complete !!");

}

Now let’s go to the function app’s Overview tab and stop the function app.

See Figure 10-13.

Figure 10-13.  Stop the Azure function app

Chapter 10 Enabling Application Insights and Azure Monitor

246

Browse to the function URL. You should get an internal 500 error or an equivalent

error. Now let’s diagnose these issues on the “Diagnose and solve problems” tab. You can

diagnose issues in the following categories:

•	 Availability and Performance

•	 Configuration and Management

•	 SSL and Domains

•	 Risk Assessment

Let’s search for Function App Down or Reporting Errors in the search box. See

Figure 10-14.

You will get the diagnostic results in a few seconds. You can see some issues being

highlighted in the Function App General Information and Function App Execution and

Errors sections. See Figure 10-15.

Figure 10-14.  Search for the appropriate diagnostic to be performed

Chapter 10 Enabling Application Insights and Azure Monitor

247

If you scroll down, you can see issues being reported as Function Compilation Error

(.csx). Specifically, in Figure 10-16, you can see a red exclamation point in the Function

Compilation Error (.csx) section, and when you further drill down in the subsequent

steps, you can see that you have a script error highlighted as Script Compilation Error

(.csx). See Figure 10-16.

If you expand the Function App General Information section, you can see that the

function app is in the Stopped state. See Figure 10-17.

Figure 10-15.  Errors reported by the diagnostics run

Figure 10-16.  More errors reported by the diagnostics run

Chapter 10 Enabling Application Insights and Azure Monitor

248

If you expand the Function Compilation Error (.csx) section, you can see where the

compilation error is in the function code. See Figure 10-18.

Figure 10-17.  Function App General Information section

Figure 10-18.  Function compilation error

Chapter 10 Enabling Application Insights and Azure Monitor

249

�Monitor Azure Functions and Create Alerts
You can monitor your Azure function metrics on the Metrics tab. Go to the Metrics tab.

See Figure 10-19.

Select a metric and an aggregation. You will get a chart for the metric that you can

use to analyze your function’s performance and execution. You can toggle between a line

chart, area chart, bar chart, and scatter chart. You can also add a new chart by clicking

the “New chart” option. See Figure 10-20.

Figure 10-19.  Go to the Metrics tab

Chapter 10 Enabling Application Insights and Azure Monitor

250

You can set alerts and be notified in case of anomalies or deviation from the normal

behavior of the Azure function. To set an alert, go to the Alerts tab and click “New alert

rule.” See Figure 10-21.

Figure 10-20.  Monitor Azure functions

Figure 10-21.  Create a new alert rule

Chapter 10 Enabling Application Insights and Azure Monitor

251

Now you need to configure the scope, condition, and action for the alert. The scope

specifies which Azure resource to monitor. The condition specifies what to monitor, for

example, when the resource gets deleted, and the action specifies what to do when the

condition is met, for example, send an email or invoke a Logic App instance. Make sure

you have selected the right resource in the scope. If not, click “Edit resource” and select

the right resource. Click “Add condition” to configure a condition. Let’s monitor for the

condition when the function app gets into a stopped state. See Figure 10-22.

Figure 10-22.  Add a condition

Chapter 10 Enabling Application Insights and Azure Monitor

252

Search for Stop Web App and select it. See Figure 10-23.

Click Done to configure the condition. See Figure 10-24.

Figure 10-23.  Configure the condition

Chapter 10 Enabling Application Insights and Azure Monitor

253

Now let’s add an action. Click “Add action group.” See Figure 10-25.

Figure 10-24.  Click Done to configure the condition

Chapter 10 Enabling Application Insights and Azure Monitor

254

Click “Create action group.” See Figure 10-26.

Provide a name for the action group and click Next: Notifications. See Figure 10-27.

Figure 10-25.  Click “Add action group”

Figure 10-26.  Create an action group

Chapter 10 Enabling Application Insights and Azure Monitor

255

Set the notification type to Email and provide a name for the notification.

See Figure 10-28.

Figure 10-27.  Provide basic details for the action group

Chapter 10 Enabling Application Insights and Azure Monitor

256

You need to configure the email details. Provide email details and click OK. You can

select the SMS and Voice check boxes and provide the country code and phone number.

See Figure 10-29.

Figure 10-28.  Select Email

Chapter 10 Enabling Application Insights and Azure Monitor

257

You can go to the Actions tab and configure an action. For example, run an Azure

function when the condition meets or executes a Logic App. Configuring an action is not

mandatory. You can click “Review + create” and then click Create to create the action

group. See Figure 10-30.

Figure 10-29.  Provide the email details

Chapter 10 Enabling Application Insights and Azure Monitor

258

Provide an alert rule name and click “Create alert rule.” The alert gets created. You

can stop the function app on the Overview tab to get an alert. See Figure 10-31.

Figure 10-30.  Add an action and click “Review + create”

Chapter 10 Enabling Application Insights and Azure Monitor

259

�Restrict the Number of Scaling Instances
for the Azure Function App
In the Consumption Plan, the underlying Azure platform scales the Azure function. It

adds new instances whenever there is a surge in load and removes additional instances

whenever the incoming load decreases. You do not have explicit control of how the

Azure function scales in the Consumption Plan. However, you can define a maximum

limit on the number of instances that the Azure functions can scale out. This action will

help you keep tabs on the infrastructure cost and efficiently plan the Azure function app

infrastructure. To set a maximum scaling limit, go to the “Scale out” tab in the Azure

portal. You can set the maximum scale-out limit and click Save. This setting will ensure

that the Azure function will not scale out beyond the maximum limit set. See Figure 10-32.

Figure 10-31.  Click “Create alert rule”

Chapter 10 Enabling Application Insights and Azure Monitor

260

�Summary
In this chapter, you learned how to enable Application Insights for Azure Monitor and

generate logs for your Azure function. You explored how to analyze the generated logs

and troubleshoot issues from the generated logs. You learned how to diagnose issues for

Azure functions with ease and troubleshoot failures. You also learned how to monitor

metrics for the Azure function and set alerts. Limiting the number of scaling instances

is an important aspect for Azure functions running in a Consumption Plan. You learned

how to limit the number of scaling instances for the Azure function running on the

Consumption Plan.

The following are the key takeaways from this chapter:

•	 You can use LogError, LogWarning, LogCritical, and

LogInformation methods to push logs to Application Insights.

•	 You can go to the “Diagnose and solve problems” tab and diagnose

Azure function failures. The underlying function performs the

diagnostics and provides a well-articulated report for the issues.

•	 On the Metrics tab, you add charts based on an available metrics and

then monitor an Azure function based on the metric criteria.

Figure 10-32.  Set the maximum scale-out limit for the Azure function

Chapter 10 Enabling Application Insights and Azure Monitor

261

•	 You can add an alert on the Metrics tab and get alerted based on your

configured anomaly condition. You can set both a notification and an

action to be performed whenever the anomalous condition is met.

•	 On the “Scale out” tab, you can specify the maximum number of

instances that your Azure function can scale out to.

In the next chapter, you will explore how to integrate Azure Key Vault for secret

management with Azure Functions.

Chapter 10 Enabling Application Insights and Azure Monitor

263
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_11

CHAPTER 11

Storing Function Secrets
in Azure Key Vault
In the previous chapters, we discussed ways to build serverless solutions to solve real-

world problems by using a combination of triggers and bindings in Azure Functions. In

some of the cases, you used other services in the solutions such as SendGrid, Azure Blob

Storage, and Azure SQL Database. To use SendGrid, you needed a valid API key, while

you need the connection string to interact with Azure SQL Database, Azure Blob Storage,

and Azure Queue Storage. These are confidential secrets that should not be exposed to

anyone. With such information, someone could cause a lot of harm to your application

and organization.

AppyMash is an Internet company that provides multiple services, ranging from

ecommerce to OTT content, to its users on a subscription basis. It is currently running

its applications using Azure App Service. It has been on an expansion spree and has

grown from a mere startup two years ago to an Internet giant now with a huge ecosystem

of services. To cope with the application development pace, the development team has

integrated multiple SaaS solutions. Recently, one of the SaaS providers that provides

mailing capabilities advised all its customers including AppyMash to regenerate the

API keys, because of a recent security breach in its databases. Following the vendor’s

advice, the AppyMash team decided to regenerate the API keys. But the problem was

the expected downtime to redeploy all the applications after replacing the API keys in all

the applications. Almost all the applications in the app ecosystem were impacted from

this mandatory modification as they were consuming the services from the SaaS vendor

for sending all the required mail communications. This was a time-consuming process,

which impacted all the new customers who were trying to subscribe to the services

along with the existing customers who were trying to change their passwords or perform

https://doi.org/10.1007/978-1-4842-7122-3_11#DOI

264

any operations that needed mail communications. The impact of such an event can be

catastrophic for the organization’s business and reputation. Such a situation justifies the

need for a centralized secret manager.

In this chapter, you will look at a service offered by Azure called Key Vault that helps

to manage and store secrets.

�Structure of the Chapter
This chapter will explore the following topics related to Azure Key Vault and Azure

Functions:

•	 Getting started with Key Vault

•	 Creating vault in the Azure portal

•	 Creating an access policy

•	 Fetching secrets from Azure Key Vault using Azure Functions

�Objective
After studying this chapter, you will be able to do the following:

•	 Create a vault and store your app secrets there

•	 Interact with Azure Key Vault from Azure Functions

�Getting Started with Azure Key Vault
Azure Key Vault is a cloud service provided by Microsoft to store secrets and sensitive

information. It provides a way to store app secrets along with certificates inside a secure

container in a centralized manner. With the help of Azure Key Vault, developers no

longer need to rely on configuration files or environment variables to store sensitive

information. You can access the secret values using the URLs by authenticating an app

with managed identities, service principals, and/or certificates.

Chapter 11 Storing Function Secrets in Azure Key Vault

265

The following are the advantages of using Azure Key Vault:

•	 It helps reduce deployments of your application that are caused due

to a change in any of the application secrets.

•	 It provides a safe and secure mechanism to store and fetch sensitive

information.

•	 It supports importing as well as generating keys, secrets, and

certificates.

•	 It provides role-based access policy to secrets.

In this chapter, you will look at ways to store your secrets in a centralized and secure

manner in Azure Key Vault.

�Create an Azure Key Vault in the Azure Portal
Go to the Azure portal. Search for key vaults in the search box and click it. See Figure 11-1.

Click Create to create a vault. See Figure 11-2.

Figure 11-1.  Searching for key vaults

Chapter 11 Storing Function Secrets in Azure Key Vault

266

Select the subscription you to use for billing and then enter the resource group

where you want to create this resource. Enter a globally unique key vault name, select the

nearest region, and then select the appropriate pricing tier. Finally, click “Next: Access

policy.” See Figure 11-3.

Select an appropriate vault access model and add an access policy if you want on

this screen. After you have configured all the access policy–related changes, click Next :

Networking. See Figure 11-4.

Figure 11-2.  Create a vault

Figure 11-3.  Click “Next: Access policy”

Chapter 11 Storing Function Secrets in Azure Key Vault

267

Select the connectivity method appropriate for your solution and click Next : Tags.

See Figure 11-5.

Figure 11-4.  Click Next : Networking

Chapter 11 Storing Function Secrets in Azure Key Vault

268

You can add tags for the resource, but this is optional. This helps in categorizing

resources and shows the consolidated billing of all the resources having the same

tag. After you fill in the name and value in the tags, click “Next : Review + create.” See

Figure 11-6.

Figure 11-5.  Click Next : Tags

Chapter 11 Storing Function Secrets in Azure Key Vault

269

On this screen, you will see a summary of all the configuration that you entered

in the previous series of screens. A validation check will be performed on the entered

configuration. If the validation passes, then click Create, as shown in Figure 11-7.

Figure 11-6.  Click “Next : Review + create”

Chapter 11 Storing Function Secrets in Azure Key Vault

270

Once the deployment is complete, Click “Go to resource.” See Figure 11-8.

Figure 11-7.  Click Create

Figure 11-8.  Click “Go to resource”

Chapter 11 Storing Function Secrets in Azure Key Vault

271

�Store Secrets in Key Vault
As you have provisioned a vault, let’s store your API key as a secret there. To store your

secrets, search for Secrets in the sidebar and then click + Generate/Import, as shown in

Figure 11-9.

Here, you will be prompted to enter the required values. By default, Manual will be

selected as the Upload option. Enter the name of the secret and then enter its value.

In this case, I have entered myApiKey as the name and entered Hello@123 as the API

key in the Value field. You will fetch this value using an Azure function later in this

chapter. You can also define the content type of the value. In addition, you can set the

activation data and deactivation date. This enables you to define when your secret will

be automatically activated or deactivated without needing any human intervention.

Alternatively, you can enable the secret by selecting Yes for Enabled. After you have

entered all the information in the required field, click Create. See Figure 11-10. This will

redirect you to the secrets screen where you will see the name of the secret you created.

Figure 11-9.  Go to Secrets and click Generate/Import

Chapter 11 Storing Function Secrets in Azure Key Vault

272

Click the row containing myApiKey to get the value of secret identity to fetch the

value of your secret. See Figure 11-11.

Now click the current version. Azure Key Vault maintains the versions of your secret.

See Figure 11-12.

Figure 11-10.  Click Create

Figure 11-11.  Click myApiKey

Chapter 11 Storing Function Secrets in Azure Key Vault

273

On the current version screen, you will get all the values associated with your secret.

You can also enable or disable your secret on this screen along with the option to set the

activation or expiration date. You can change the value of your secrets on this screen too.

Let’s copy the secret identifier value from here. You will later use this value to fetch the

value of the secret from your function app. See Figure 11-13.

Figure 11-12.  Click Current Version

Figure 11-13.  Copy the value of the secret identifier

Chapter 11 Storing Function Secrets in Azure Key Vault

274

�Create an Azure Function in the Azure Portal
Go to the Azure portal, search for function app in the search box, and click it. See

Figure 11-14.

Click Create to create a new function app. See Figure 11-15.

Now, you will be required to enter the subscription name, resource group, and

function app name that needs to be globally unique. Select Code as the Publish option,

.NET as the runtime stack, and 3.1 as the version. Select the nearest region as per your

requirements. After filing in all the required information, click Next : Hosting. See

Figure 11-16.

Figure 11-14.  Click Function App

Figure 11-15.  Click Create

Chapter 11 Storing Function Secrets in Azure Key Vault

275

On the current screen, you will have to select an existing storage account or create

a new one. By default, a new storage account with a random name will be filled in for

you by the portal. When you click Create for this function app, it will create the storage

account. Select Windows as the operating system and Consumption (Serverless) as the

plan type. Now click Next : Monitoring. See Figure 11-17.

Figure 11-16.  Click Next : Hosting

Chapter 11 Storing Function Secrets in Azure Key Vault

276

Select Yes for Enable Application Insights and click Next : Tags. See Figure 11-18.

Figure 11-17.  Click Next : Monitoring

Chapter 11 Storing Function Secrets in Azure Key Vault

277

You can add tags for the resource, but this is optional. After you have filled in the

name and value in the tags, click “Next : Review + create.” See Figure 11-19.

Figure 11-18.  Click Next : Tags

Chapter 11 Storing Function Secrets in Azure Key Vault

278

On the next screen, shown in Figure 11-20, you will see a summary of all the

configuration values you entered in the previous screens. A validation check will be done

on the configuration values. Once the validation has passed successfully, click Create.

Figure 11-19.  Click “Next : Review + create”

Chapter 11 Storing Function Secrets in Azure Key Vault

279

Once the deployment is complete, click “Go to resource.” See Figure 11-21.

Figure 11-20.  Click Create

Figure 11-21.  Click “Go to resource”

Chapter 11 Storing Function Secrets in Azure Key Vault

280

Click Functions in the side menu and then click + Add. See Figure 11-22.

Since you are going to develop your function in the portal itself, let’s select “Develop

in portal” for the development environment. Select “Http trigger” as the template.

Then click Add to create the Azure function. This will create an Azure function called

HttpTrigger1 out of the box. See Figure 11-23.

Figure 11-22.  Click + Add

Chapter 11 Storing Function Secrets in Azure Key Vault

281

The HttpTrigger1 function will have boilerplate code to return a message along with

the name passed in the query string or request body payload. You can click Code + Test

to view the code of the function. To send a request to this function, click Get Function Url

to get the URL of this function. You can paste this URL in a browser tab to send a request.

See Figure 11-24.

Figure 11-23.  Click Add

Chapter 11 Storing Function Secrets in Azure Key Vault

282

Select Code + Test and modify the function’s code by using the code shown in

Listing 11-1. Here you are reading the value of the API key present in your application

setting and later returning it as a response to the users.

Listing 11-1.  Function Code to Fetch Value of Secret from Key Vault

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{

 var apiKey = System.Environment.GetEnvironmentVariable("myApiKey");

 log.LogInformation(apiKey);

 return new OkObjectResult(apiKey);

}

The function will look for a key named myApiKey in the application settings and then

get its value. Let’s add the key-value pair of myApiKey in the application settings. Go back

to the function app screen; then click Configurations in the Settings sidebar. Now click

the “+ New application” setting to add a new key-value pair. See Figure 11-25.

Figure 11-24.  Click Code + Test

Chapter 11 Storing Function Secrets in Azure Key Vault

283

Now enter myApiKey as the name and enter @Microsoft.
KeyVault(SecretUri={enter the value of the secret identifier}) as the value. This defines

that the source of this value is the key vault, and it looks for the value in the key vault

using the secret identifier, whenever the function wants to get the value of this key. After

entering the values, click OK and then click Save on the configuration screen to save the

key-value pair. See Figure 11-26.

Figure 11-25.  Click “+ New application setting”

Figure 11-26.  Click OK

Chapter 11 Storing Function Secrets in Azure Key Vault

284

Let’s use the function URL of the HttpTrigger1 function to send a request to the

function to fetch the app secret. You can get the function URL by going to Functions,

selecting HttpTrigger1, and then clicking Get function URL. After getting the function

URL, let’s paste the URL in a browser tab and press Enter to get the response from your

function.

As you can see in Figure 11-27, you got the value of myApiKey that you entered in the

application settings, which was supposed to fetch the value from the key vault.

You may wonder why you aren’t getting the value of the secret. You entered the

secret identifier. Your function should have been able to fetch the value from the key

vault. But because you haven’t allowed this function app to access the key vault, it is

unable to get the value of the secret stored in the vault. In the next section, you will learn

how to configure the access policy to allow the function app to access the secrets from

the key vault.

�Add an Access Policy for Azure Key Vault
To allow access to your key vault from the function app, you will have to create a user-

assigned identity for your function app and then add an access policy for this app in the

key vault.

Go to the function app. Click Identity in the Settings section of the sidebar. Then set

the status to On for the system-assigned identity and click Save. This will register your

app in the Azure Active Directory. After registration, the function will get the permission

to access resources protected by Azure Active Directory. Azure Key Vault authenticates

with the help of the Azure Active Directory Service principals. The service principals

of Azure Active Directory can be a user or application service principal or a managed

identity of a resource. In this case, you create a service principal for your function app by

enabling the status in the system-assigned identity. See Figure 11-28.

Figure 11-27.  Response from the function

Chapter 11 Storing Function Secrets in Azure Key Vault

285

Now go to the key vault. Click “Access policies” and then click Add Access Policy.

See Figure 11-29.

Now, you will have to fill in all the required information in the order shown in

Figure 11-30. Select Get for “Secret permissions.” Following the principle of least

privilege, you have granted only the Get permission in this access policy. Click “None

Figure 11-28.  Create a system-assigned managed identity

Figure 11-29.  Click + Add Access Policy

Chapter 11 Storing Function Secrets in Azure Key Vault

286

selected” for “Select principal.” This will open the side screen Principal. Search for the

function app chapter-11-func-app in the search box and then select it. This will add a

reference of the service principal of the function app in the access policy. Now click Add

to add this access policy. This will redirect you to the Access Policies screen. You will

have to click Save here to save the access policy. See Figure 11-30.

Note I f you want the privilege to update or delete the secret, then you can add a
permission like Set or Delete.

Now your function should be able to access the value of secrets stored in the vault

as you have created an access policy empowering your function with Get permission for

secrets by adding the service principal of your function app.

Let’s go back to the tab where you sent a request to your HttpTrigger1 function. Let’s

refresh the browser and see the response. See Figure 11-31.

Figure 11-31.  Response from the function

Figure 11-30.  Click Add

Chapter 11 Storing Function Secrets in Azure Key Vault

287

As shown in Figure 11-31, your function was able to return the value of the secret

stored in the vault this time. So, you have successfully built an Azure function to fetch

secrets from a vault. If you wanted to update the API key used by your function apps

or other applications that are using the API key, you would have to modify the value of

the secret in the key vault only, instead of modifying the value API key by going to the

application settings of all those applications.

�Summary
In this chapter, you learned how to create a key vault using the Azure portal, store

secrets in the vault, create access policies, and fetch values of secrets stored in Azure

Key Vault using your functions. While application settings offer a mechanism to

reduce deployments caused by changes in application secrets, when you use common

application secrets like a connection string or API key of a particular service across

multiple applications, changing the values in the application settings of all the

applications will be a cumbersome task. Azure Key Vault comes in handy when you

need to modify the value of the secret in one place. In addition, Azure Key Vault provides

a role-based access mechanism using Azure Active Directory, and it does not allow

direct access to secrets to the application or to unauthorized resources/users. In the

next chapter, we will discuss ways to enable authentication and authorization in your

functions using Azure Active Directory.

Chapter 11 Storing Function Secrets in Azure Key Vault

289
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_12

CHAPTER 12

Authentication and
Authorization Using Azure
Active Directory
You can build APIs using HTTP-triggered Azure functions. These APIs can interact with

databases or perform mission-critical business logic. It is highly crucial to secure these

APIs. An HTTP-triggered Azure function should be available for authenticated users

and perform the actions/methods the user is authorized to do. Azure Active Directory is

an identity and access management solution on the Azure platform. You can integrate

HTTP-triggered Azure functions with Azure Active Directory with ease and enable all of

your authentication and authorization needs.

In the previous chapter, you learned how to secure the secrets and credentials used

by Azure Functions in Azure Key Vault. This chapter will explore how to secure access for

HTTP-triggered Azure functions using Azure Active Directory.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Azure Functions and Azure

Active Directory:

•	 What Azure Active Directory is

•	 What authentication and authorization are

•	 Implementing authentication and authentication for Azure Functions

using Azure Active Directory

https://doi.org/10.1007/978-1-4842-7122-3_12#DOI

290

�Objectives
After studying this chapter, you will be able to do the following:

•	 Implement authentication for HTTP-triggered Azure functions using

Azure Active Directory

•	 Implement authorization for HTTP-triggered Azure functions using

Azure Active Directory

�What Is Azure Active Directory?
Azure Active Directory is a multitenant identity and access management system on the

Azure platform. You can build on-premises and cloud-based applications and leverage

Azure Active Directory for identity management. Thousands of SaaS-based applications

such as Microsoft 365, Dynamics CRM, and many more leverage Azure Active Directory

as their security backbone. Azure Active Directory can be used to bring in audit and

governance for users accessing Azure resources. Developers can implement single sign-

on and multifactor authentication for their applications using Azure Active Directory.

Automation is an essential aspect of resource provisioning in Azure. You can

use Azure PowerShell or Azure CLI or any other infrastructure-as-code solution like

Terraform to interact with and use Azure Active Directory via automation. You can write

automation to manage essential security aspects for an application such as user login

audits, unauthorized access attempts, and more.

The following are a few of the key features of Azure Active Directory:

•	 Supports single sign-on and multifactor authentication.

•	 Manages authentication and authorization for cloud SaaS-based

applications and on-premises applications.

•	 Rich SDK support for identity and access management to integrate

with a wide range of applications built using .NET, Java, Angular,

and more, such as MSAL libraries for .NET-based applications and

MSAL4J libraries for Java-based applications.

Chapter 12 Authentication and Authorization Using Azure Active Directory

291

•	 Provides an enterprise-grade identity and access management

solution for business-to-business (B2B) and business-to-customer/

consumer (B2C) applications. It supports external identity providers

such as Facebook, Twitter, Google, or any other identity provider

that supports OAuth 1.0, OAuth 2.0, OpenID Connect, and SAML

protocols.

•	 Manages devices for your corporation.

•	 Provides domain services and facilitates joining Azure virtual

machines to a domain without needing a domain controller.

•	 Provides governance and reporting for security and access usages for

your application.

•	 Supports role-based authentication.

•	 Supports invoking powerful Microsoft Graph APIs.

�What Are Authentication and Authorization?
Your application should identify who is trying to access and control what the user can

access. All unauthorized access to the application should be disallowed. Authentication

checks who the user is. It challenges the user to provide identification, and if the

challenge is successful, the application identifies the user and verifies the user’s

identity. Authorization dictates what an identified user can do in the application. As a

good practice, you create roles, which define what an authenticated user can do in the

application. You can assign multiple roles to the users. For example, an application has

two roles: Administrator and User. All the users who are assigned the Administrator

role can provide their credentials to the application and get authenticated. Then they

can access and work on all the administration pages in the application. Similarly,

when a user who has the User role logs in to the system, he will not have access to the

administration pages and will be limited to the application’s User pages. To sum up,

authentication verifies who the user is, and authorization dictates what the user can do,

as shown in Figure 12-1.

Chapter 12 Authentication and Authorization Using Azure Active Directory

292

�Implement Authentication and Authentication
for Azure Functions Using Azure Active Directory
Azure Functions provides excellent support for logging using Application Insights. Let’s

create an Azure function with Application Insights enabled using the Azure portal. Then

you can modify the function code to log some information, errors, and traces for the

Azure function. Open the Azure portal and click “Create a resource.” See Figure 12-2.

Click Compute and then click Function App. See Figure 12-3.

Figure 12-1.  Authentication and authorization process

Figure 12-2.  Click “Create a resource”

Chapter 12 Authentication and Authorization Using Azure Active Directory

293

Provide the basic details for the function. Let’s select .NET and 3.1 as the runtime

stack and the version. Click “Review + create.” See Figure 12-4.

Figure 12-3.  Click Function App

Chapter 12 Authentication and Authorization Using Azure Active Directory

294

Click Create. See Figure 12-5.

Figure 12-4.  Provide the basic details for the Azure function

Chapter 12 Authentication and Authorization Using Azure Active Directory

295

Go to the Azure function app once it is created. Now you need to add a function to

the Azure function app. Click the Functions tab and click Add. See Figure 12-6.

Figure 12-5.  Click Create

Chapter 12 Authentication and Authorization Using Azure Active Directory

296

Select “Http trigger” and click Add. See Figure 12-7.

Figure 12-6.  Add a function

Chapter 12 Authentication and Authorization Using Azure Active Directory

297

Once the function gets created, get into the function and click Code + Test.

See Figure 12-8.

Figure 12-7.  Select “Http trigger”

Chapter 12 Authentication and Authorization Using Azure Active Directory

298

Click Get Function Url and browse to the URL in the browser. Now let’s go to

Application Insights and verify whether these logs were added. See Figure 12-9.

Now let’s enable authentication for the Azure function. Go back to the function app

and click Authentication. See Figure 12-10.

Figure 12-8.  Click Code + Test

Figure 12-9.  Click Get Function Url

Chapter 12 Authentication and Authorization Using Azure Active Directory

299

Click “Add identity provider” to add a provider that you will use to authenticate the

Azure function. See Figure 12-11.

Set the identity provider to Microsoft. Then select “Create new app registration” for

the app registration type, and select “Current tenant – Single tenant” for the supported

account types. Provide a name for the application that will get created in the Azure

Active Directory tenant. See Figure 12-12.

Figure 12-10.  Go to the Authentication tab

Figure 12-11.  Configure the identity provider

Chapter 12 Authentication and Authorization Using Azure Active Directory

300

Scroll down and make the necessary configuration, as shown in Figure 12-13.

Click Add.

Figure 12-12.  Configure the Microsoft identity provider

Chapter 12 Authentication and Authorization Using Azure Active Directory

301

Now the authentication is configured for the application. Browse the function URL

that you copied earlier in an incognito or private browsing mode. It will prompt you to

provide your credentials. You can use the same credentials that you used to log in to the

Azure portal. See Figure 12-14.

Figure 12-13.  Add a Microsoft identity provider

Chapter 12 Authentication and Authorization Using Azure Active Directory

302

Let’s configure authorization now. You need to check if the logged-in user has the

necessary role configured to access the page. The Microsoft Graph API can help you get

the roles for the user in Azure Active Directory. Let’s go to the Azure Active Directory

application that you created and add the necessary permissions for Azure Active

Directory. Go to the Azure portal home page and navigate to Azure Active Directory.

Click “App registrations.” Then click the application that you created while enabling

authentication for the Azure function. See Figure 12-15.

Figure 12-14.  Enter your credentials

Chapter 12 Authentication and Authorization Using Azure Active Directory

303

Click the “API permissions” tab and then click “Add a permission.” See Figure 12-16.

Figure 12-15.  Go to “App registrations”

Chapter 12 Authentication and Authorization Using Azure Active Directory

304

Provide all the necessary permissions as listed in Figure 12-17 and click “Grant

admin consent for Default Directory.”

You will authorize all users who have the role of application developer. Let’s go to the

Users tab in Azure Active Directory. See Figure 12-18.

Figure 12-16.  Click “Add a permission”

Figure 12-17.  Add all the permissions and grant admin consent

Chapter 12 Authentication and Authorization Using Azure Active Directory

305

Click the user you will be logging in as. You can choose to use the user you are signed

in as in the Azure portal. See Figure 12-19.

Click the Assigned Roles tab. This action will list all the roles assigned to the user.

Click “Add assignments” and add the “Application developer” role. Once the role gets

added, click the “Application developer” role in the user’s list of roles. This action will

navigate you to the role details. See Figure 12-20.

Figure 12-18.  Go to the Users tab

Figure 12-19.  Click the user

Chapter 12 Authentication and Authorization Using Azure Active Directory

306

Click the Description tab and copy the template ID. You will use this in the Graph API

call in your function’s code to pull out all the users assigned that role. See Figure 12-21.

Figure 12-20.  Assign a role to the user

Figure 12-21.  Copy the template ID for the role

Chapter 12 Authentication and Authorization Using Azure Active Directory

307

Now let’s go back to the Azure function you created earlier. You need to add the

necessary code to enable authorization. You can add authorization using the NuGet

package Microsoft.IdentityModel.Clients.ActiveDirectory. To add a NuGet

package to the function script, you need to create a function.proj file in the root folder

of the function and add the package reference for this NuGet package. You can add a

new file using the App Service Editor. Click the App Service Editor tab and then click Go.

See Figure 12-22.

Right-click the folder with your function name and then click New File. See

Figure 12-23.

Figure 12-22.  Go to the App Service Editor

Chapter 12 Authentication and Authorization Using Azure Active Directory

308

Provide the name of the file as Function.proj. Copy the code shown in Listing 12-1

in the Function.proj file, as shown in Listing 12-1. It will get autosaved.

Listing 12-1.  Function.proj Code

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netstandard2.0</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 �<PackageReference Include="Microsoft.IdentityModel.Clients.

ActiveDirectory" Version="5.2.9" />

 </ItemGroup>

</Project>

Figure 12-23.  Create the Function.proj file

Chapter 12 Authentication and Authorization Using Azure Active Directory

309

Now let’s go to the Azure function code in the run.csx file and replace the existing

code with the code shown in Listing 12-2. Here you are getting the identity of the logged-

in user. Then, from the identity, you are extracting the username for the logged-in user.

You are invoking the Microsoft Graph API and fetching all the assigned users with the

“Application developer” role. The Microsoft Graph API exposes a set of REST APIs that

will help you work with data on Microsoft Cloud services like Microsoft 365, Azure Active

Directory, and many more. You can fetch and work on data about the users in Azure

Active Directory or get data from Microsoft 365 services such as OneDrive or Calendar

or Outlook and many more. If the logged-in user’s username is found in the list returned

by the Microsoft Graph API call, you will authorize the user and return the text “Hello

World.” If the user is not there in the list returned by the Microsoft Graph API call, you are

sending back the “Not Authorized” text. Make sure you replace {RoleTemplateId} with

the template ID you copied for the “Application developer” role in the Description tab of

that role earlier.

Listing 12-2.  Function Code with Authorization Enabled

#r "Newtonsoft.Json"

using System.Net;

using System.Text;

using System.Configuration;

using System.Security.Claims;

using System.Net.Http;

using System.Net.Http.Headers;

using Newtonsoft.Json;

using Microsoft.IdentityModel.Clients.ActiveDirectory;

using Microsoft.AspNetCore.Mvc;

public static async Task<IActionResult > Run(

 HttpRequest req,

 ILogger log)

{

 // Get identity for logged in user

 var identity = req.HttpContext?.User?.Identity as ClaimsIdentity;

 var claims = identity.Claims;

 var roleClaimType = identity.RoleClaimType;

Chapter 12 Authentication and Authorization Using Azure Active Directory

310

 var roles = claims.Where(c => c.Type == roleClaimType).ToList();

 log.LogInformation(roles.Count.ToString());

 �log.LogInformation("IsAuthenticated: {isAuthenticated}",identity?.

IsAuthenticated);

 log.LogInformation("Identity name: {name}",identity?.Name);

 log.LogInformation("AuthenticationType: {authenticationType}",

 identity?.AuthenticationType);

 var userName = "";

 foreach (var claim in identity?.Claims)

 {

 �log.LogInformation("Claim: {type} : {value}", claim.Type,

claim.Value);

 //Get logged in user name

 if(claim.Type == "preferred_username")

 {

 userName = claim.Value;

 }

 }

 �var accessToken = req.Headers.SingleOrDefault(h => h.Key == "X-MS-

TOKEN-AAD-ACCESS-TOKEN").Value;

 log.LogInformation(accessToken);

 �// �Call the graph API to get all the users having Role : Application

Developer

 �// �Provide the template id for the Role that we have copied from the

Role Description

 // in Azure Active Directory

 �string graphRequest = $"https://graph.microsoft.com/v1.0/

directoryRoles/roleTemplateId=cf1c38e5-3621-4004-a7cb-879624dced7c/

members";

 var authHeader = "Bearer " + accessToken;

 HttpClient client = new HttpClient();

 �client.DefaultRequestHeaders.TryAddWithoutValidation("Authorization",

authHeader);

 var response = await client.GetAsync(new Uri(graphRequest));

Chapter 12 Authentication and Authorization Using Azure Active Directory

311

 string content = await response.Content.ReadAsStringAsync();

 log.LogInformation(content);

 // Deserialize the JSON string into Root object

 Root myDeserializedClass = JsonConvert.DeserializeObject<Root>(content);

 // Loop through all the values returned by Graph API

 // Verify if the logged-in username is there in the list

 foreach(Value value in myDeserializedClass.Value)

 {

 log.LogInformation(value.UserPrincipalName);

 //check if the user name returned matches with the logged

 //in username

 if(value.UserPrincipalName == userName)

 {

 return new OkObjectResult("Hello World");

 }

 }

 return new OkObjectResult("Not Authorized");

}

public class Value

 {

 [JsonProperty("@odata.type")]

 public string OdataType { get; set; }

 [JsonProperty("id")]

 public string Id { get; set; }

 [JsonProperty("businessPhones")]

 public List<object> BusinessPhones { get; set; }

 [JsonProperty("displayName")]

 public string DisplayName { get; set; }

 [JsonProperty("givenName")]

 public object GivenName { get; set; }

Chapter 12 Authentication and Authorization Using Azure Active Directory

312

 [JsonProperty("jobTitle")]

 public object JobTitle { get; set; }

 [JsonProperty("mail")]

 public object Mail { get; set; }

 [JsonProperty("mobilePhone")]

 public object MobilePhone { get; set; }

 [JsonProperty("officeLocation")]

 public object OfficeLocation { get; set; }

 [JsonProperty("preferredLanguage")]

 public object PreferredLanguage { get; set; }

 [JsonProperty("surname")]

 public object Surname { get; set; }

 [JsonProperty("userPrincipalName")]

 public string UserPrincipalName { get; set; }

 }

 public class Root

 {

 [JsonProperty("@odata.context")]

 public string OdataContext { get; set; }

 [JsonProperty("value")]

 public List<Value> Value { get; set; }

 }

�Summary
In this chapter, you learned how to enable authentication and authorization for Azure

Functions using Azure Active Directory. You explored Azure Active Directory and its

offerings at a very high level. You learned the basic concepts of authentication and

authorization. You then registered an application in Azure Active Directory from

the Authentication tab of an Azure function and then enabled authentication and

authorization for the Azure function with ease.

Chapter 12 Authentication and Authorization Using Azure Active Directory

313

The following are the key takeaways from this chapter:

•	 Azure Active Directory is a multitenant identity and access

management system on the Azure platform.

•	 Authentication verifies who the user is, and authorization dictates

what the user can do.

•	 You can enable authentication with just a few clicks in the

Authentication tab of an Azure function.

•	 Enabling authentication creates an app registration in Azure Active

Directory.

•	 We can use Graph APIs to get the logged-in roles for the user.

In the next chapter, you will explore how to integrate the API Management service

with Azure Functions and build a secure and robust API service using Azure Functions.

Chapter 12 Authentication and Authorization Using Azure Active Directory

315
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_13

CHAPTER 13

Securing Azure Functions
with API Management
You can build APIs using HTTP-triggered Azure functions. These APIs interact with

the databases and perform CRUD operations. You need to have granular control over

the incoming requests and outgoing responses for the APIs developed using Azure

Functions. It is highly essential to secure these APIs and control the header, body,

and other necessary aspects for the API calls. You should be able to control who can

consume these APIs, and only the subscribed developers should have access to them.

All these requirements can be achieved by integrating the API Management service

with HTTP-triggered Azure functions. All requests and responses to an HTTP-triggered

Azure function should pass through the API Management service. You can control these

requests and responses at a granular level using API Management.

In the previous chapter, you learned how to secure HTTP-triggered Azure functions

using Azure Active Directory. In this chapter, you will learn how to gain granular control

over the requests and responses for the HTTP-triggered Azure functions using the API

Management service.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Azure Functions and Azure API

Management:

•	 What Azure API Management is

•	 Advantages of using API Management

•	 Integrating API Management with Azure Functions

https://doi.org/10.1007/978-1-4842-7122-3_13#DOI

316

�Objectives
After studying this chapter, you will be able to do the following:

•	 Understand the API Management service

•	 Integrate the API Management service with Azure Functions

�What Is the API Management Service?
The API Management service helps you create robust API gateways that can host

back-end APIs. It helps you gain granular control over the requests and responses of

the back-end APIs. Developers who want to consume your API can request the APIs

subscriptions, and the API Management service administrator or the owner can approve

these requests. Once the request is approved, the developers can use the APIs. You can

version your APIs and expose these APIs as multiple versions using the API Management

service. The developers and consumers can subscribe to the version as per their

requirements.

The API Management service exposes a developer portal where the developers can

discover the service they need and get the API documentation. The developers can raise

subscription requests for the APIs in the developer portal. The developer portal is fully

customizable, and the look and feel can be modified based on your needs.

Different units or project teams can develop the APIs in your organization. You can

use the API Management service to manage and expose these APIs centrally. You can

modify the incoming requests and outgoing responses for the APIs. For example, modify

the response body, check if the JWT security token is in the request header, or add a

query string parameter to the request.

You can use Azure HTTP-triggered functions and the API Management service to

build microservices-based APIs.

�Advantages of Using the API Management Service
The following are a few of the advantages of using the API Management service:

•	 Central hosting of APIs built by different teams using different

choices of technology.

Chapter 13 Securing Azure Functions with API Management

317

•	 Exposing the APIs as subscriptions and versions for the developers/

consumers to subscribe to and consume.

•	 Each of the hosted APIs can scale independently and will be

warranted from failures of other APIs.

•	 Provides an excellent mechanism to manage the back-end services

and get granular control over API requests and responses.

•	 Enhanced security of back-end APIs.

•	 It provides a developer portal that helps in the discovery, description,

and subscription of APIs.

�Integrate API Management with Azure Functions
Let’s create an HTTP-triggered Azure function and integrate it with the API Management

service. Open the Azure portal and click “Create a resource.” See Figure 13-1.

Click Compute and then click Function App. See Figure 13-2.

Figure 13-1.  Click “Create a resource”

Chapter 13 Securing Azure Functions with API Management

318

Provide the basic details for the function. Let’s select .NET and 3.1 as the runtime

stack and the version. Click “Review + create.” See Figure 13-3.

Figure 13-2.  Click Function App

Chapter 13 Securing Azure Functions with API Management

319

Click Create. See Figure 13-4.

Figure 13-3.  Provide basic details for the Azure functions

Chapter 13 Securing Azure Functions with API Management

320

Go to the Azure function app once it has been created. Now you need to add a

function to the Azure function app. Click the Functions tab and click Add. See Figure 13-5.

Figure 13-4.  Click Create

Chapter 13 Securing Azure Functions with API Management

321

Select “Http trigger” and click Add. See Figure 13-6.

Figure 13-5.  Add a function

Chapter 13 Securing Azure Functions with API Management

322

Once the function gets created, go into the function and click Code + Test.

See Figure 13-7.

Figure 13-6.  Select “Http trigger”

Chapter 13 Securing Azure Functions with API Management

323

You can see that the code in Listing 13-1 is generated by default. You can pass the

name parameter and its value in the query string, and the function will return the value

you passed in the name parameter. If you do not pass the name parameter in the query

string, it will return a message asking you to pass the name parameter with a value in the

query string.

Listing 13-1.  Function.proj Code

#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;

using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{

 log.LogInformation("C# HTTP trigger function processed a request.");

 string name = req.Query["name"];

 string requestBody = await new StreamReader(req.Body).ReadToEndAsync();

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 name = name ?? data?.name;

Figure 13-7.  Click Code + Test

Chapter 13 Securing Azure Functions with API Management

324

 string responseMessage = string.IsNullOrEmpty(name)

 ? "This HTTP triggered function executed successfully. Pass a name in

 the query string or in the request body for a personalized response."

 : $"Hello, {name}. This HTTP triggered function executed successfully.";

 return new OkObjectResult(responseMessage);

}

Now let’s create the API Management service. Go to the Azure portal and click

“Create a resource.” See Figure 13-8.

Click the Integration tab and then API Management. See Figure 13-9.

Figure 13-8.  Click “Create a resource”

Figure 13-9.  Click API Management

Chapter 13 Securing Azure Functions with API Management

325

Provide the subscription details, resource group, name of the API Management

service, location where you need to create the service, and other necessary details. Select

“Developer (no SLA)” for “Pricing tier.” Click “Review + create” and then click Create on

the subsequent screen. See Figure 13-10.

Once the API Management service gets created, navigate to the service in the portal.

Click the APIs tab. See Figure 13-11.

Figure 13-10.  Click Review + create

Chapter 13 Securing Azure Functions with API Management

326

Select the function app on the APIs tab. You will be configuring the back-end service

as the function app that you created earlier. See Figure 13-12.

Figure 13-11.  Go to the APIs tab

Chapter 13 Securing Azure Functions with API Management

327

Now you need to select the function that you need to integrate with the API

Management service. Click Browse. See Figure 13-13.

Figure 13-12.  Select Function App

Figure 13-13.  Click Browse

Chapter 13 Securing Azure Functions with API Management

328

Click Function App. See Figure 13-14.

Select the function app that you need to configure as a back-end service.

See Figure 13-15.

Figure 13-14.  Click Function App

Chapter 13 Securing Azure Functions with API Management

329

Select the function in the selected function app that you need to expose as a back-

end service. Click Select. See Figure 13-16.

Figure 13-15.  Select Function App

Chapter 13 Securing Azure Functions with API Management

330

Provide the display name and name for the back-end service and then click Create.

See Figure 13-17.

Figure 13-16.  Select the function to expose as the back-end service

Chapter 13 Securing Azure Functions with API Management

331

Go to the API back end that you created and then click “Add policy.” See Figure 13-18.

Figure 13-17.  Create the back-end service

Figure 13-18.  Add a policy

Chapter 13 Securing Azure Functions with API Management

332

You can set a query parameter called name and provide a default value in the

incoming request if the user has not provided the name parameter. If the user has

provided the name parameter in the request, it will skip adding the query parameter. See

Figure 13-19.

Add the query parameter name and provide a default value instead of Default Name.

Set the action to “skip” so as not to override the name parameter passed by the user. Click

Save. See Figure 13-20.

Figure 13-19.  Set a policy for query parameters

Chapter 13 Securing Azure Functions with API Management

333

Now let’s test the API Management service that you configured. Go to the Test tab.

Select the Get method and click Send. See Figure 13-21.

Figure 13-20.  Provide the query parameter to add to the request

Chapter 13 Securing Azure Functions with API Management

334

You are not passing any query string parameter here. The API Management service

will add the name parameter with the value Default Name in the request, and you get

back the Default Name in the response. See Figure 13-22.

Figure 13-21.  Send a request to the API Management service without a query
parameter

Chapter 13 Securing Azure Functions with API Management

335

Now let’s add a query string name with a value. Click Send. See Figure 13-23.

Figure 13-22.  Response from the API Management service

Chapter 13 Securing Azure Functions with API Management

336

The value in the name parameter does not get overridden by the API Management

service, and you get back the value that you sent in the parameter name. See Figure 13-24.

Figure 13-23.  Provide the query parameter in the request

Chapter 13 Securing Azure Functions with API Management

337

�Summary
In this chapter, you learned how to configure an HTTP-triggered Azure function as

a back-end API for the Azure API Management service. You explored the Azure API

Management service and its offerings at a very high level. You learned how to control the

requests and response for an API configured as a back-end API for the API Management

service. You added a policy to add a query parameter for the incoming requests in the

API Management service.

The following are the key takeaways from this chapter:

•	 The API Management service helps you control the incoming

requests and outgoing responses for HTTP-triggered Azure functions

configured as the back-end APIs at a granular level.

•	 It enhances the security of Azure functions.

Figure 13-24.  Response from the API Management service

Chapter 13 Securing Azure Functions with API Management

338

•	 The API Management service exposes a developer portal where the

developers can discover the service they need, subscribe to it, and get

the API documentation.

•	 You can use Azure HTTP-triggered functions and the API

Management service to build microservices-based APIs.

In the next chapter, you will explore how to deploy function code to Azure functions

using editors such as Visual Studio IDE and Visual Studio Code.

Chapter 13 Securing Azure Functions with API Management

339
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_14

CHAPTER 14

Deploying Your Azure
Functions Using IDEs
In the previous chapters, we discussed ways to build serverless solutions using various

triggers and bindings to solve real-world problems. You studied how to store application

secrets and configurations using Azure Key Vault and ways to monitor your functions

using Application Insights and Azure Monitor. All these things are quite essential to

building great solutions, but we have not covered an essential part yet, which is how to

deploy these solutions in Azure.

As the name of the chapter suggests, the focus of this chapter will be to deploy your

Azure functions using an integrated development environment (IDE). As mentioned,

you can develop Azure functions using IDEs such as Visual Studio and VS Code, and you

will be leveraging them to deploy the functions to Azure. Later in this book you will look

at ways to deploy functions in containers and use Azure DevOps to deliver automated

deployments of your Azure functions.

�Structure of the Chapter
This chapter will explore the following aspects of HTTP triggers and Azure SQL:

•	 Deploying an Azure function to Azure using Visual Studio 2019

•	 Deploying an Azure function to a deployment slot using

Visual Studio 2019

•	 Deploying an Azure function using VS Code

https://doi.org/10.1007/978-1-4842-7122-3_14#DOI

340

�Objective
After studying this chapter, you will be able to do the following:

•	 Deploy Azure functions using IDEs

•	 Work with deployment slots

�Deploy an Azure Function to Azure Using Visual
Studio 2019
Open Visual Studio 2019, and click “Create a new project.” See Figure 14-1.

Figure 14-1.  Create a new project

Chapter 14 Deploying Your Azure Functions Using IDEs

341

Select Azure Functions as the project template and click Next. See Figure 14-2.

Enter the project name, location, and solution name. After you fill them in, click

Create. See Figure 14-3.

Figure 14-2.  Select the project template

Chapter 14 Deploying Your Azure Functions Using IDEs

342

Select the “Http trigger” type, set Azure Functions V3 as the function runtime, and

select Anonymous as the authentication level. Click Create. See Figure 14-4.

Figure 14-3.  Click Create

Chapter 14 Deploying Your Azure Functions Using IDEs

343

Visual Studio will generate an Azure function named Function1 with some

boilerplate code to return a message as the response. Since you want to deploy your

function project to Azure, click the “Sign in” button in case you haven’t signed into

Visual Studio with an account that has a valid Azure subscription. As you can see from

Figure 14-5, we have already logged into Visual Studio.

Figure 14-4.  Provide the template details

Chapter 14 Deploying Your Azure Functions Using IDEs

344

To deploy the function present in your solution to your Azure subscription,

right-click FunctionAppDeploy Project and click Publish. See Figure 14-6.

Figure 14-5.  Sign in to Visual Studio

Figure 14-6.  Click Publish

Chapter 14 Deploying Your Azure Functions Using IDEs

345

You will see a pop-up screen with various target options to deploy your function

project. Select Azure as the target and click Next. See Figure 14-7.

Select Azure Function App (Windows) as the specific target and click Next. See

Figure 14-8.

Figure 14-7.  Select Azure as the target

Chapter 14 Deploying Your Azure Functions Using IDEs

346

Select the subscription name and select the view as resource group. Since you

don’t have any existing function app in your subscription, let’s click + as highlighted in

Figure 14-9 to create a function app.

Figure 14-8.  Select the specific target

Chapter 14 Deploying Your Azure Functions Using IDEs

347

Enter the name of the function app, select the subscription where you want to create

this function app, choose the resource group, select Consumption as the plan type, select

the location where you want to create this function app, and select a storage account

or create a new one for the function app by clicking New. Once you have entered all

the required fields, click Create. Then Visual Studio will create a function app running

on a Consumption Plan inside the selected resource group and subscription in the

background. It is similar to creating a function app through the Azure portal. It usually

takes some minutes to provision all the resources. See Figure 14-10.

Figure 14-9.  Select the subscription and view

Chapter 14 Deploying Your Azure Functions Using IDEs

348

Visual Studio will have selected the function app that you created in the previous

step. Click Finish to create a publish profile to deploy your function project to the newly

created function app. If you had any existing function apps, you could have deployed

your function app over there by selecting it in this step. See Figure 14-11.

Figure 14-10.  Create a new function app

Chapter 14 Deploying Your Azure Functions Using IDEs

349

You need to click Publish to start the deployment process. In the settings section

of the Publish pane, you can see the configurations of your function app, including the

function app URL, resource group, and function app name. See Figure 14-12.

Figure 14-11.  Click Finish

Chapter 14 Deploying Your Azure Functions Using IDEs

350

You can see the progress of your deployment in the Output window, as shown in

Figure 14-13.

To test your function that you deployed using Visual Studio, you will have to go to the

Azure portal. Then go to the function app that you had created in Visual Studio and click

Functions in the sidebar menu, as highlighted in Figure 14-14. Here you will see the list

of all the functions deployed in this function app. Let’s click Function1.

Figure 14-12.  Click Publish

Figure 14-13.  View the Output window

Chapter 14 Deploying Your Azure Functions Using IDEs

351

You need to click the Get Function Url button to get the URL of Function1. Copy the

URL shown in the dialog. See Figure 14-15.

To test whether our function works well or not, open a web browser and paste the

function URL copied from the previous step along with a query string of name=ashirwad.

Now press Enter to send a request to the function. You should get a result similar to

Figure 14-16.

Figure 14-14.  Click Function1

Figure 14-15.  Get the URL of Function1

Chapter 14 Deploying Your Azure Functions Using IDEs

352

In this section, you looked at ways to deploy a function project to Azure and how

to create a function app resource using Visual Studio. Now you will dive deeper into

deployment slots and ways to use them with Azure Functions.

�What Are Deployment Slots?
Usually when you are working on enhancement projects, one instance of the application

will be already running in the production environment, and before you deploy the

applications along with the enhancement to a production environment, you will usually

perform multiple tests to confirm your release is issue-free. With slots, you can deploy a

new instance of our application to perform sanity tests.

Deployment slots provide a mechanism to perform blue-green deployments. This

ensures that you have minimal downtime while giving releases of application along with

ensuring easy fallback options. Once our new release is deployed in a staging slot and

passes the testing phases and is ready to be deployed to the production environment,

you can use the swap option to move the release deployed in the staging slot to

production with minimal downtimes.

Note  While running on a Consumption Plan, you can have only one slot, but while
running on an App Service Plan, you can have multiple slots.

�Deploy an Azure Function to Deployment Slots
To create a slot, go to the function app. Click Deployment Slots in the Deployment

section in the sidebar menu. Now click + Add Slot to create a new slot. See Figure 14-17.

Figure 14-16.  Send a GET request to Function1

Chapter 14 Deploying Your Azure Functions Using IDEs

353

You will see a new screen to enter a slot name. Once you enter the slot name, you

need to click Add to create a new slot for your function app. See Figure 14-18.

A slot will be created for your function app along with its status, as shown in

Figure 14-19. The slot in which the production workload is running will have a tag and

production slot associated with its name.

Figure 14-17.  Click Add Slot

Figure 14-18.  Click Add

Chapter 14 Deploying Your Azure Functions Using IDEs

354

You have created the slots, so let’s open the function project again in Visual Studio

to deploy a modified version of the function app to it. Refer to Listing 14-1 to view the

modified version of Function1.

Listing 14-1.  Modified Version of Function1.cs

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace FunctionAppDeploy

{

 public static class Function1

 {

 [FunctionName("Function1")]

Figure 14-19.  View the deployment slots

Chapter 14 Deploying Your Azure Functions Using IDEs

355

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post", Route

= null)] HttpRequest req, ILogger log)

 {

 �log.LogInformation("C# HTTP trigger function processed a

request.");

 string name = req.Query["name"];

 �string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 name = name ?? data?.name;

 string responseMessage = string.IsNullOrEmpty(name);

 �? "This HTTP triggered function executed successfully. Pass

a name in the query string or in the request body for a

personalized response."

 : $"Hello, {name}.";

 return new OkObjectResult(responseMessage);

 }

 }

}

The response returned from Function1 when you pass name=ashirwad as a query

string will be “Hello Ashirwad” instead of “Hello Ashirwad.” This HTTP-triggered

function executed successfully.

To deploy this modified version of Function1.cs to your slot that you have created

in the Azure portal, right-click the FunctionAppDeploy project and click Publish. See

Figure 14-20.

Chapter 14 Deploying Your Azure Functions Using IDEs

356

Click + New to create a new publish profile to deploy the FunctionAppDeploy project

to the newly created slot. See Figure 14-21.

Select Azure as the target in the Publish dialog and click Next. See Figure 14-22.

Figure 14-20.  Click Publish

Figure 14-21.  Create a new publish profile

Chapter 14 Deploying Your Azure Functions Using IDEs

357

Select Azure Functions App (Windows) as the specific target and click Next, as shown

in Figure 14-23.

Figure 14-22.  Select Azure as the target

Chapter 14 Deploying Your Azure Functions Using IDEs

358

Select the subscription, select View as the resource group, and select the newly

created deployment slot in your function app. Click Finish. See Figure 14-24.

Figure 14-23.  Select Azure Function App (Windows) as the specific target

Chapter 14 Deploying Your Azure Functions Using IDEs

359

Visual Studio will create a publish profile depending on the configurations you have

selected. Let’s click Publish to start the deployment process of the function project to the

slot. See Figure 14-25.

Figure 14-24.  Select the deployment slot

Chapter 14 Deploying Your Azure Functions Using IDEs

360

You can see the status of the deployment process from the Output window. See

Figure 14-26.

After the deployment is successful, let’s go to the Azure portal and then click the slots

by going to the deployment center of the function app. See Figure 14-27.

Figure 14-25.  Click Publish

Figure 14-26.  View the deployment progress in the Output window

Chapter 14 Deploying Your Azure Functions Using IDEs

361

Go to the Functions section in the sidebar of the function app and click Function1.

See Figure 14-28.

Figure 14-27.  Click the deployment slot

Figure 14-28.  Click Function1

Chapter 14 Deploying Your Azure Functions Using IDEs

362

Click the Get Function Url and copy the URL to send a request to the function. See

Figure 14-29.

Let’s paste the function URL in the address bar by concatenating the name=ashirwad

query string and press Enter. See Figure 14-30.

As you can see in Figure 14-30, the response from Function1 was as expected. Thus,

you were able to successfully deploy the function in the slot.

�Deploy an Azure Function to Azure Using VS Code
Open Visual Studio Code and click the “Create a new project” icon as highlighted in

Figure 14-31 to create a function project.

Figure 14-29.  Click Get Function Url

Figure 14-30.  Response from Function1 deployed on the slot

Chapter 14 Deploying Your Azure Functions Using IDEs

363

You have to select the language in which you will be writing the functions. Let’s select

C# in this window. See Figure 14-32.

You will have to select the .NET runtime for the function project. Let’s select .NET

Core 3 LTS. See Figure 14-33.

Figure 14-31.  Create a new function project

Figure 14-32.  Select the programming language

Chapter 14 Deploying Your Azure Functions Using IDEs

364

You have to select the template type, i.e., the trigger type of your function for the

function project. Let’s select HttpTrigger. See Figure 14-34.

You need to enter the name for the function. Let's name it HttpTriggerFunction. See

Figure 14-35.

You need to enter a namespace for the function project. Let’s keep it as Company.

Function. See Figure 14-36.

Figure 14-33.  Select a NET runtime

Figure 14-34.  Select the trigger type

Figure 14-35.  Enter a function name

Chapter 14 Deploying Your Azure Functions Using IDEs

365

You need to select the authorization level for the function. Use Anonymous. See

Figure 14-37.

As you can see, a local function project was created by VS Code with an

HTTP-triggered function named HttpTriggerFunction. This function contains boilerplate

code similar to that shown in Listing 14-1. To deploy this function to Azure, click the

Deploy to Function App icon, as highlighted in Figure 14-38.

Figure 14-36.  Enter the namespace for the project

Figure 14-37.  Select the authorization level of the function

Figure 14-38.  Click the Deploy to Function App icon

Chapter 14 Deploying Your Azure Functions Using IDEs

366

We will be prompted either to select any of the existing function apps or to create

a new function app. Click “Create new Function App in Azure…Advanced” and press

Enter. See Figure 14-39.

Note I f you select an existing function app to deploy your function project, then it
will overwrite any previous deployments made to it, and it cannot be undone.

You will have to enter the function app name. Let’s enter Chapter14FunctionApp as

the function app name and press Enter. See Figure 14-40.

You will be prompted to select the runtime stack for the function app. Since you

selected .NET Core 3.1 as the runtime for the function project while creating it, let’s

select the same setting here. See Figure 14-41.

Figure 14-39.  Create a new function app in Azure

Figure 14-40.  Enter the function app name

Figure 14-41.  Select the runtime stack

Chapter 14 Deploying Your Azure Functions Using IDEs

367

You will have to select the OS for the function app. Select Windows. See Figure 14-42.

You will be prompted to select the hosting plan. Let’s select the Consumption

hosting plan. See Figure 14-43.

Now, you will have to select the resource group inside of which your function app

and other associated resources will be created. Let’s select rg-chapter-14 as the resource

group. See Figure 14-44.

Figure 14-42.  Select Windows as the OS

Figure 14-43.  Select the hosting plan

Figure 14-44.  Select the resource group

Chapter 14 Deploying Your Azure Functions Using IDEs

368

You will be prompted to select from any of the existing storage accounts or create

a new storage account that will be used by the function app. Let’s select a “Create new

storage account” as it is advisable to have a separate dedicated storage account for each

function app. See Figure 14-45.

Enter the name for the storage account. Let’s name it chapter14functionapp. See

Figure 14-46.

You will be prompted to either create a new Application Insights resource or skip for

now for your function app. Let’s click “Skip for now.” See Figure 14-47.

Figure 14-45.  Click “Create new storage account”

Figure 14-46.  Enter the name for the storage account

Figure 14-47.  Select an Application Insights resource for the function app

Chapter 14 Deploying Your Azure Functions Using IDEs

369

Now you will have to select the region in which all the resources associated with

the function app will be created. Let’s select South India here and press Enter. See

Figure 14-48.

The deployment process of your function app will be going on now in the

background. You can view the progress in the Output window. Once the deployment

has completed successfully, you will see a notification dialog at the bottom screen of

VS Code similar to the one shown in Figure 14-49. You can also see any errors in the

function app deployment in notification dialog and Output window.

Instead of going to the function app in the Azure portal to get the function URL, let’s

right-click the HttpTriggerFunction present inside the function app in which you had

created and deployed your function project and click Execute Function Now to send a

request to your function running in Azure. See Figure 14-50.

Figure 14-48.  Select the region/location

Figure 14-49.  Deployment status of the function app

Chapter 14 Deploying Your Azure Functions Using IDEs

370

Now you will be prompted to enter the name along with its value as a key-value pair

in JSON format. Let’s enter it as {“name”:”ashirwad”} and press Enter. This will send a

request to the HttpTriggerFunction running in Chapter14FunctionApp. See Figure 14-51.

You will get back the response from the function in a notification dialog at the

bottom of the VS Code window. This function gave back the response “Hello, Ashirwad.”

So, this HTTP-triggered function executed successfully as expected. See Figure 14-52.

Figure 14-50.  Click Execute Function Now

Figure 14-52.  Response from HttpTriggerFunction

Figure 14-51.  Pass the name and its value as a key-value pair

Chapter 14 Deploying Your Azure Functions Using IDEs

371

�Summary
In this chapter, you explored ways to deploy function projects using different IDEs. We

also discussed slots and ways to create a deployment slot in the Azure portal and deploy

a function project there.

The following are the key takeaways from the chapter:

•	 You can deploy an Azure function project using IDEs like Visual

Studio, VS Code, etc.

•	 Deployment slots help you run multiple versions of your

applications.

•	 Every slot has its own instance and can be swapped with the

application running in the production slot.

•	 Slots are helpful in performing blue-green deployments with ease.

Chapter 14 Deploying Your Azure Functions Using IDEs

373
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_15

CHAPTER 15

Deploying Your Azure
Functions Using a
CI/CD Pipeline with
Azure DevOps
While a software application is being developed and deployed, you use multiple

processes before the final application is completed and deployed. This often includes

phases such as requirements gathering, system design, development, testing, and

deployment irrespective of the SDLC models followed. These processes used to be quite

time-consuming, with the development and operations teams not being in sync. With

the demanding business scenarios of current times, you need a shorter time to market to

release newer features of your products to serve your end customers.

To meet the demand for faster delivery of applications and features, organizations

have embraced DevOps principles and practices to increase their team’s efficiency by

overcoming the hurdles associated with following traditional SDLC models. Often the

development and operations teams are isolated from each other in a traditional setup,

which makes it difficult to move or roll back features to different environments. By

incorporating DevOps practices such as agile planning, continuous integration (CI),

continuous delivery (CD), and monitoring, you try to ensure seamless collaboration and

communication among the developer, operations, QA, and security teams to deliver and

ship products quickly with robust rollback mechanisms to meet customer demands and

reduce cost.

https://doi.org/10.1007/978-1-4842-7122-3_15#DOI

374

In previous chapters, you explored ways to build solutions and ways to deploy them

to Azure with different IDEs. The focus in this chapter will be to explore ways to deploy

your function project to Azure using CI/CD pipelines with Azure DevOps. This can also

be done using GitHub actions.

�Structure of the Chapter
This chapter will explore the following topics:

•	 What Azure DevOps is

•	 Creating a build pipeline and enabling continuous integration using

Azure Pipelines

•	 Creating a release pipeline and enabling continuous deployment

using Azure Pipelines

�Objectives
After studying this chapter, you will able to do the following:

•	 Work with GitHub repositories in Azure DevOps

•	 Build CI/CD pipelines to deploy function projects using Azure

�What Is Azure DevOps?
A typical application lifecycle contains multiple phases such as planning, development,

delivery, and operations. DevOps teams use various tools to help them with each of the

phases. For example, some organizations use tools like Jira from Atlassian to collaborate

and plan sprints, perform issue tracking, and add feature requests, but they use a

different set of tools like Jenkins or GitHub for delivery. With Azure DevOps, Microsoft

provides a suite of services in a unified platform to help your DevOps teams in all the

phases of the application lifecycle.

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

375

Azure DevOps provides the following services to help teams to increase the

efficiency of teams in all the phases of the application lifecycle:

•	 Azure Repos: With Azure Repos, teams can keep track of changes

in their code base and provide an efficient way to keep a history of

their development. It is a version control system provided by Azure

DevOps where you can create multiple private repositories and

collaborate to add features or resolve bugs/issues.

•	 Azure Boards: With Azure Boards, teams can collaborate, plan, track,

and monitor tasks, feature requests, and issues related to the projects.

It provides native support for Scrum and Kanban. You can create a

dashboard to visually monitor the progress of your project.

•	 Azure Pipelines: With Azure Pipelines, teams can practice continuous

integration and continuous delivery to build and ship products

developed by various languages to different target environments. It

helps in creating the build packages and performing unit tests along

with other tasks such as vulnerability assessment using tasks from

third-party vendors from the marketplace.

•	 Azure Test Plans: With Azure Test Plans, teams can perform various

kinds of testing such as exploratory, manual, or user acceptance tests

in a browser. Azure Test Plans provides the QA teams with all the

resources required to perform testing with end-to-end traceability

within the browser.

•	 Azure Artifacts: With Azure Artifacts, teams can create and share

NPM, NuGet, or Maven packages feeds with the rest of teams from

public and private sources. It is a package management solution

offered as a service in Azure DevOps.

Note  Maven is a Java project management software that helps you build,
package, version, and run Java applications with ease. You can add the external
packages that you will refer to in your Java project using a Maven project
configuration file, and Maven will include those packages while building the
application.

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

376

Before diving deeper into this chapter, you will need to provision a function app in

Azure where you will be deploying your function project and then commit your function

project to a repository. I have created a function app named funcchapter15 that does

not contain any functions for the time being. I will show how to use Azure Pipelines

to deploy the function present in your function project to this function app later in the

chapter. See Figure 15-1.

Though Azure DevOps provides you with a service to create a private repository,

we will be using GitHub for this chapter. I have created a repository in GitHub called

Chapter15FunctionApp. You can find the source code at https://github.com/

AshirwadSatapathi/Chapter15FunctionApp.

This repository contains a function project with an HTTP-triggered function that

returns a personalized message along with the value passed for the query string name or

for the value of name sent in the request body. You can clone this repository or use your

own repository to follow along with this chapter.

Now that you have created a function app and a repository, you are ready to create

your CI/CD pipelines.

Figure 15-1.  Create a function app

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

https://github.com/AshirwadSatapathi/Chapter15FunctionApp
https://github.com/AshirwadSatapathi/Chapter15FunctionApp

377

�Create a Project in Azure DevOps
Go to https://dev.azure.com and click Sign In to log on to your Azure DevOps account.

Note I f you are signing up for the first time, you will be prompted to enter an
organization name and select the region where you want it to be hosted.

To create a project, go to the organization where you want to create the project and

click “+ New project.” See Figure 15-2.

You will be prompted to enter the project details on a new screen. Enter the

project name and description, select Private for the visibility, and then select Git as

the version control system. Then set “Work item process” to the process you follow in

your organization. For example, if your organization follows Scrum, then select Scrum

here. After filling in all the required information, click Create to create the project. See

Figure 15-3. This will create the project and redirect you to the project screen.

Figure 15-2.  Click “+ New project”

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

https://dev.azure.com

378

�Create a Build Pipeline in Azure DevOps and Enable
Continuous Integration
To create a build pipeline, click Pipelines and then click Create Pipeline. See Figure 15-4.

Figure 15-3.  Click Create

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

379

The simplest way to create a pipeline in Azure DevOps is by using the classic editor.

You can also use YAML scripts to create a build and deployment pipeline. For now, click

“Use the classic editor,” as shown in Figure 15-5.

Figure 15-4.  Click Create Pipeline

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

380

Select GitHub as the source. This will prompt you to create a connection to allow

access to the pipeline to your GitHub repositories. You can create a connection by

either authorizing using OAuth or using the GitHub personal access token. You will be

creating the connection by clicking “Authorize using OAuth.” This will prompt you to log

in using your GitHub credentials and give the connection the required permissions. See

Figure 15-6.

Figure 15-5.  Click “Use the classic editor”

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

381

Click Authorize AzurePipelines to allow permissions to the pipeline and create a

connection. See Figure 15-7.

Figure 15-6.  Click “Authorize using OAuth”

Figure 15-7.  Click Authorize AzurePipelines

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

382

You will have to select the repository and branch containing your project files. Once

selected, click Continue. See Figure 15-8.

Azure DevOps provides multiple templates based on the application. Since your

application is an Azure function developed using .NET, let’s search for azure functions for

.NET in the search box and then click Apply in the template, as highlighted in Figure 15-9.

Alternatively, you can start with an empty job, too. See Figure 15-9.

Figure 15-8.  Click Continue

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

383

Azure DevOps will generate a build pipeline with the prepopulated tasks required to

build your function project in the agent job. These are the minimum set of tasks required

to build your function project.

Note Y ou can add further tasks from the Azure Marketplace offered by third-party
vendors like WhiteSource to perform vulnerability assessment in the build pipeline
and review the vulnerabilities reports after the build pipeline has executed. You can
find more information at www.whitesourcesoftware.com/resources/.

You can configure the agent job by adding tasks or changing the agent specification

to a Mac or Ubuntu instead of vs2017-win2016. Let’s click Save to save the build pipeline.

If you want to execute the build pipeline, you can manually start it by clicking Save &

Queue after making the required changes or just click Queue to start the build process if

you haven’t made any changes. See Figure 15-10.

Figure 15-9.  Select the template and click Apply

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

http://www.whitesourcesoftware.com/resources/

384

You may have noticed that you do not have a test task here in the pipeline. Ideally

it should be added to run all the unit and integration tests present in the project’s

solutions, but since you did not have any unit tests written for this solution, you have not

added it in the pipeline. With this, you have created the build pipeline for your Azure

Functions project that can be triggered manually. But it does not make sense to manually

start the build process for most of the project. It would be ideal to have a mechanism to

automatically start the build process every time code was committed to your repository.

You can achieve that by enabling continuous integration for your build pipeline.

To enable continuous integration, click the Triggers tab and then select the checkbox

“Enable continuous integration.” Also, select Include as the type and define the branch

specification as Master. You choose Master in the branch specification since you want

to start the build process every time a change is made in the master branch. If you

wanted to initiate the build process whenever a change was made in some other branch,

then you would define that here. To save the changes, you have to enable continuous

continuation and initiate the build process. Click Save & Queue. See Figure 15-11.

Figure 15-10.  Click Save

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

385

You will see a dialog to enter some information and make any changes to existing

configurations before starting the build process. You can add a comment here, but it

is completely optional. After entering the required information or changing any of the

configuration details as required, click “Save and run” to start the build process. See

Figure 15-12.

Figure 15-11.  Enable continuous integration

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

386

The build pipeline will be in the queue for some time and should start as soon as

a build agent is available. To review each of the tasks of the build and look at the logs

associated with each task, click “Agent job 1.” See Figure 15-13.

Figure 15-12.  Click “Save and run”

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

387

On this screen, you can view the status of each task as well as look at the logs

associated with each of the them by clicking them. Once all the tasks have completed

successfully, you will see a green check mark for all of them. See Figure 15-14.

Figure 15-13.  Click “Agent job 1”

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

388

In this section, you created a build pipeline and enabled continuous integrations.

Now every time a change happens in your repository, the build process will be initiated

without any human intervention, thus automating the build process. But you have only

generated the build package and published the build artifact. You need to deploy the

build package to your function app.

�Create a Release Pipeline in Azure DevOps
and Enable Continuous Delivery
To deploy the function project by using the build package generated by the build

pipeline, you need to create a release pipeline.

To create a release pipeline, go to Pipelines, click Releases and then click “New

pipeline.” See Figure 15-15.

Figure 15-14.  View the status of tasks and their logs

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

389

You will be prompted to select the template type. Since you want to deploy a function

project, search for function, select “Deploy a function app to Azure functions,” and click

Apply. This will populate a set of tasks required to deploy out of the box. See Figure 15-16.

Figure 15-15.  Create a new release pipeline

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

390

You have to give this stage a name. Since you have only one function app in this case,

let’s name it Production. Depending on the solution, there can be multiple stages in a

release pipeline. See Figure 15-17.

Figure 15-16.  Select a template

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

391

As you have already selected the template type as well as named the stage, let’s add

the artifact. Click + Add or “+ Add an artifact” to do so. There can be multiple artifacts in

a release pipeline. See Figure 15-18.

Figure 15-17.  Enter a name for the stage

Figure 15-18.  Add an artifact to the release pipeline

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

392

You will see a pop-up on the side; it requests you to select the source type along with

the source. The source is the build pipeline whose build package you want to deploy in

this release pipeline. By default, it will select Latest as the default version and generate

a source alias name. When you select Latest as the default version, the release pipeline

picks the latest build package generated by the build pipeline for the deployment. After

entering the required fields, click Add. See Figure 15-19.

You have added the artifact and configured the release pipeline to take the latest

build package for deployment, but you haven’t configured it to start every time a new

build package is generated. Ideally, you want the release pipeline to start the deployment

process as soon as a new build is generated. This process is also known as continuous

deployment. To enable continuous deployment in your release pipeline, click the

Figure 15-19.  Click Add

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

393

thunderbolt icon highlighted in Figure 15-20. Now you will see a pop-up on the side. You

need to toggle the Enabled button to set the continuous deployment trigger to on. This

will enable continuous integration support in your release pipeline. See Figure 15-20.

Note I n addition to providing a mechanism to add continuous deployments,
Azure DevOps provides a way to have predeployment conditions such as setting
predeployment approval for each stage for certain users. This is a useful feature.

You have added the artifact, selected the template for the stage, and configured

continuous deployment for the release pipeline, but you haven’t yet configured the agent

job and task. To do so, click “1 job, 1 task,” as highlighted in Figure 15-21.

Figure 15-20.  Enable a continuous deployment trigger

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

394

When you have selected the template as “Deploy a function app to Azure

functions,” it will add the Deploy Azure Function App task to your agent, but you

will have to configure the parameters. You need to select the Azure subscription and

authorize the release pipeline to access all the resources present in the subscription.

Now you need to select Function App on Windows for the app type and select

funcchapter15 as the app service name, which is the function app you created at the

beginning of this chapter. After filling in the required fields, click Save to save the

changes made. See Figure 15-22.

Figure 15-21.  Click “1 job, 1 task”

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

395

Click “Create release” to start the deployment process. See Figure 15-23.

Figure 15-22.  Configure the task and save the changes

Figure 15-23.  Click “Create release”

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

396

You will be prompted with a new screen where you will see the details associated

with your release such as the stage name as well as the source alias name of the artifact.

You can add a release description on this screen and click Create to start the deployment

process. See Figure 15-24.

To view the deployment status, click Release-1, as highlighted in Figure 15-25.

Figure 15-24.  Click Create to start the deployment process

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

397

On this screen, you can view the deployment status of the stage. To view the status of

the tasks and their logs, you need to click Logs, as highlighted in Figure 15-26.

Figure 15-25.  Click Release-1

Figure 15-26.  Click Logs

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

398

You can view the status of all the tasks associated with the release pipeline on this

screen. To view the logs of a particular task, you can click it. Once the deployment

is completed, you will see a green check mark for all the tasks and the message

“Succeeded” beside the stage name, as highlighted in Figure 15-27.

Now that your release pipeline has completed the deployment successfully, let’s go

back to your function app and check whether an Azure function named Function1 has

been created. As shown in Figure 15-28, your function now contains a function named

Function1. Let’s get the function URL of this function and test it.

Figure 15-27.  View the deployment status

Figure 15-28.  Check the functions present in the function app

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

399

Open the web browser and paste the function URL along with the query string

?name=ashirwad to test the function. As shown in the response, your function was

successfully deployed to the function app and is running as expected. See Figure 15-29.

�Summary
In this chapter, you learned about Azure DevOps and the suite of services it offers

briefly. You explored ways to create a build and release pipeline including creating a

build package of your function project in the GitHub repository. You also learned how

to deploy it to an existing function app. In addition, we discussed ways to build and

release pipelines with continuous integration and continuous delivery/deployment. The

objective of this chapter was to explore ways to deploy functions using CI/CD pipelines

using Azure DevOps, but don’t think that just using Azure DevOps means you are

following DevOps. As Donovan Brown says, DevOps is the union of people, process, and

products to enable the continuous delivery of value to your end users. Azure DevOps is

simply a DevOps tool that helps in different phases of the application development cycle,

and using any tool doesn’t mean you are practicing DevOps.

In the next chapter, you will explore ways to deploy and run your function apps in

containers.

Figure 15-29.  Response returned from the function

Chapter 15 Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps

401
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_16

CHAPTER 16

Running Azure Functions
in Containers
Containers are a popular hosting choice for many applications because they are based

on modern architecture principles. You can package your application and all its hosting

dependencies in a container and run the container on the target platform. This makes

your deployments portable. You can build a strategy to reuse a container across multiple

environments with ease by externalizing the environment-based configurations. You

can save a lot of time setting up the hosting environment for your application using a

container approach. Using Kubernetes-based Event-Driven Autoscaling (KEDA), you

can run your Azure functions as containers in an Azure Kubernetes Service (AKS) cluster.

In the previous chapter, you learned how to implement continuous integration (CI) and

continuous deployment (CD) using Azure Pipelines for Azure Functions. In this chapter,

you will learn how to containerize an Azure function and run it in AKS using KEDA.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Azure Functions and KEDA:

•	 Getting started with containers and AKS

•	 What serverless Kubernetes and KEDA in Azure are

•	 Containerizing Azure functions and pushing them to an Azure

container registry

•	 Deploying the containerized Azure function in AKS using KEDA

https://doi.org/10.1007/978-1-4842-7122-3_16#DOI

402

�Objectives
After studying this chapter, you will be able to do the following:

•	 Understand AKS and containers

•	 Containerize and run Azure functions in AKS using KEDA

�Getting Started with Containers and AKS
You may choose to host your application on a physical server or on a virtual machine

in the target environment. In either case, you will spend a considerable amount of

effort installing and configuring the hosting environment for the application. Once the

hosting environment is up and running, you again will spend a good amount of effort

setting up your application and its dependencies. You will repeat the same set of steps

when you need to host the application in another environment. Containers can be an

excellent and intelligent hosting mechanism here. You can build your code, package the

hosting environment and application, and package all the dependencies in a container.

You need to run the container in the target environment without setting up the hosting

environment for the application. This hosting approach saves a lot of time and effort and

is quite popular among developers.

Containers are highly portable. You can build the application container image and

keep it in a container registry. A container registry is a collection of container images. In

the target environment, you need to pull the container image from the container registry

and execute the container image as a container. Once the container starts up, you can

access the environment. You may choose to externalize the configuration settings for

your application and set them up depending on the target environment.

Containers are an operating system–level virtualization. In the target environment

where the container runs, you need to install a container engine. Docker is an example

of a container engine. The other popular examples of container engines available

are Containerd, CRI-O, and Mesos. The container engine virtualizes the underlying

operating system and runs the containers as operating system–level threads. Containers

do not need an operating system (OS) of their own, because they run on top of the

operating system that gets virtualized by the container engine. In virtual machines

(VMs), the underlying hardware infrastructure is virtualized by virtualization software

like Hyper-V, and the virtual machines run on top of the virtualized environment.

Chapter 16 Running Azure Functions in Containers

403

The virtual machines must have an operating system of their own, and hence the virtual

machines are heavier than containers.

In a production scenario, your application will comprise loosely coupled

components or services, and you may choose to host each of these services in a

container. For example, say your application has a user interface component, a business

layer component, and a data access component. You have designed these components

to be loosely coupled. Your application will have three containers hosting each of these

components. For complex applications, you may have more components or services, so

the number of containers will be higher. You need to manage each of these containers

so that they are highly available, scale independently, are fault-tolerant, and should be

able to communicate among themselves securely. You need a solution to orchestrate

these containers and manage them on your behalf. Container orchestrator solutions like

Docker Swarm or Kubernetes can help here. Kubernetes is an open source container

orchestrator solution developed by Google. It consists of a master node, called Control

Plane, and child nodes where your application containers run inside pods. You plan the

number of pods needed to run your container, the container images that the containers

will use, and other such details and then instruct the Control Plane node to schedule and

execute the application containers in the child nodes. The Control Plane node runs these

containers inside the pods in the nodes based on your plan. The pods can run a single

container in most cases and can also run multiple containers in complex scenarios. The

Control Plane node makes sure that the containers running inside the pods are highly

available and are fault tolerant.

You can plan a set of pods running identical containers in a replica set. A replica set

is a group of identical pods. Each of the pods in the replica set is called a replica. You

can define the number of pods running identical containers or replicas in the node. If

one replica goes down or crashes, the Control Plane node spins up another replica. It

makes sure that the number of pods running identical containers or replicas is always

maintained in the replica set. This mechanism guarantees high availability and makes

your application fault tolerant from an infrastructure perspective. These identical pods

can scale independently based on the incoming requests. You can also scale the nodes.

Setting up a Kubernetes cluster is cumbersome and needs much effort. Once the

cluster is set up, you need to keep the Control Plane node operational and manage all

infrastructure aspects for the Control Plane node. It takes a reasonable amount of time

to create a Kubernetes cluster. Azure provides a managed Kubernetes solution called

Azure Kubernetes Service. AKS abstracts the underlying infrastructure for the Control

Chapter 16 Running Azure Functions in Containers

404

Plane and manages all the infrastructure and operational aspects on your behalf. You

need to manage the nodes where the application will run. The nodes are usually virtual

machines in the case of AKS. You do not have any control over the Control Plane, and the

underlying Azure infrastructure entirely manages it. In the case of AKS, you can create a

managed Kubernetes cluster in minutes.

Note  Containers are operating system–level virtualizations and are lightweight.
You can package your application along with the hosting environment and run it
in the target environment. Kubernetes orchestrates and manages the application
containers. Kubernetes consists of the master node called Control Plane that
controls the child nodes running the application container. AKS is a managed
Kubernetes offering on Azure and abstracts the Control Plane from you.

�What Is Serverless Kubernetes and KEDA in Azure?
AKS uses virtual machines as nodes and runs the application containers inside pods

in the virtual machines. It provides an excellent scaling mechanism where additional

virtual machines get added when the number of incoming requests increases, and the

extra virtual machines get decommissioned when the number of incoming requests

decreases. However, it takes some time for the virtual machines to spin up and be ready

to serve the requests. The incoming traffic surge does not get addressed immediately.

Hence, there is a delay in managing the additional incoming requests. You can use

serverless nodes where Azure container instances are used as nodes instead of virtual

machines to handle such scenarios. Azure container instances can spin up very fast

and instantly start serving the additional incoming requests without adding any delays.

Your nodes can scale rapidly and add many additional nodes in no time when Azure

container instances are used as nodes. These serverless nodes use the virtual Kubelet

technology and use Azure container instances as nodes in the Kubernetes cluster. Azure

container instances are much cheaper than virtual machines, and you save a lot of

money when you use serverless nodes.

You can containerize the Azure functions and run them in the AKS cluster

using KEDA. This mechanism brings a true serverless experience to the AKS. These

containerized functions can run both on virtual machines and on Azure container

Chapter 16 Running Azure Functions in Containers

405

instances–based nodes. The Azure Functions runtime executes the application code

for the functions, and the scaling is taken care of by the KEDA component. The KEDA

component does the job of the Azure function scale controller.

Note  Virtual Kubelet helps you run your containerized application on Azure
container instances in the AKS cluster. KEDA helps you run your containerized
Azure functions on the AKS cluster.

�Containerize Azure Functions and Push Them
to the Azure Container Registry
Now let’s containerize an Azure function and push it to the Azure container registry.

Once you have the Azure function container image in the Azure container registry, you

can run it in the AKS cluster.

As a prerequisite, you should have the following installed on your local system. You

can read the official documentation for these tools available on their websites if you

need more information.

•	 Azure CLI

•	 Azure Functions Core Tools

•	 Kubectl

•	 Docker Desktop

Let’s create an Azure container registry where you can push the containerized

function image. Go to the Azure portal and click “Create a resource.” See Figure 16-1.

Figure 16-1.  Click “Create a resource”

Chapter 16 Running Azure Functions in Containers

406

Click the Containers tab and then click Containers Registry. See Figure 16-2.

Provide the subscription details, resource group, name, location, and pricing tier for

the Azure container registry. Click “Review + create.” See Figure 16-3.

Figure 16-2.  Click Container Registry

Chapter 16 Running Azure Functions in Containers

407

Click Create. This action will spin up the Azure container registry. See Figure 16-4.

Figure 16-3.  Provide the basic details for the container registry

Chapter 16 Running Azure Functions in Containers

408

Now let’s open the command prompt locally and execute the command in

Listing 16-1 to initialize the creation of a .NET Core–based Azure Functions App Service

that can run in a Docker container.

Listing 16-1.  Create Function App Service

func init . --docker

You will be prompted to select a worker runtime environment for the Azure function.

Select dotnet.

Execute the command shown in Listing 16-2 to create an HTTP-triggered function

in the Azure Functions service. Select “Http trigger” when prompted to select the trigger

template for the Azure function. Provide the name of the function when prompted.

Figure 16-4.  Create the container registry

Chapter 16 Running Azure Functions in Containers

409

Listing 16-2.  Create an HTTP-Triggered Function

func new

When the command in Listing 16-2 completes successfully, the HTTP-triggered

Azure function gets generated. Now let’s containerize the default Azure function that was

generated without modifying any code. Execute the command in Listing 16-3. You are

creating a container image named keda_func with the image tag as latest.

Listing 16-3.  Build the Container Image for the Azure Function

docker build -t keda_func:latest .

Now let’s run the container image you created locally using the command in

Listing 16-4. The container will run on port 8080. The docker run command executes

the container image. The --publish option specifies that port 8080 of the local system,

where you are running the docker run command, gets mapped to port 80 of the

executing container. The --detach option specifies that the container image runs in the

background, and the --name option specifies the name of the executing container.

Listing 16-4.  Run the Container Image for the Azure Function Locally

docker run --publish 8080:80 --detach --name keda_func keda_func:latest

Let’s browse the function app running inside the container using the following URL:

http://localhost:8080/

See Figure 16-5.

Chapter 16 Running Azure Functions in Containers

410

Now let’s push the containerized Azure function to the Azure container registry. You

need the admin credentials for the Azure container registry. Go to the Azure container

registry you created in the Azure portal. Click the “Access keys” tab. Enable the admin

user and copy the username and the password. See Figure 16-6.

Figure 16-6.  Enable the admin user for the Azure container registry

Figure 16-5.  Azure function running inside the container

Chapter 16 Running Azure Functions in Containers

411

Now let’s execute the Docker command in Listing 16-5 and provide the admin

credentials for the Azure container registry when prompted. Replace {ACR} with the

name of the Azure container registry in the command.

Listing 16-5.  Authenticate with the Azure Container Registry

docker login {ACR}.azurecr.io

Execute the command in Listing 16-6 to tag the container image to the Azure container

registry. Replace {ACR} with the name of the Azure container registry. The keda_func value

is the name of the container image you created earlier for the Azure function app.

Listing 16-6.  Tag the Azure Function Container Image with the Azure Container

Registry

docker tag keda_func:latest {ACR}.azurecr.io/keda_func:latest

Now let’s push the container image to the Azure container registry using the

command in Listing 16-7. Replace {ACR} with the name of the Azure container registry.

Listing 16-7.  Push the Container Image to the Azure Container Registry

docker push {ACR}.azurecr.io/keda_func:latest

Go back to the Azure container registry in the Azure portal. Click the Repositories

tab, and you will see the Azure function container image there. See Figure 16-7.

Figure 16-7.  Azure function container image in the Azure container registry

Chapter 16 Running Azure Functions in Containers

412

�Deploy the Containerized Azure Functions in AKS
Using KEDA
Now let’s create an AKS instance and run the containerized Azure function on it. Go to

the Azure portal and click “Create a resource.” See Figure 16-8.

Click the Containers tab and then click Kubernetes Service. See Figure 16-9.

Figure 16-9.  Click Kubernetes Service

Figure 16-8.  Create a new resource

Chapter 16 Running Azure Functions in Containers

413

Provide the subscription, resource group, name, location, and other necessary basic

details for the Azure Kubernetes Service instance. Provide 1 as the number of nodes. See

Figure 16-10.

Go to the Authentication tab and select “System-assigned managed identity” as

the authentication method. You need to integrate the Azure container registry that you

created earlier with AKS. You can do this integration in the portal if you select “System-

assigned managed identity” as the authentication method. See Figure 16-11.

Figure 16-10.  Provide the basic details to AKS

Chapter 16 Running Azure Functions in Containers

414

Go to the Integrations tab and select the Azure container registry created earlier.

Click “Review + create.” See Figure 16-12.

Figure 16-11.  Provide the authentication method

Chapter 16 Running Azure Functions in Containers

415

Click Create. This action will spin up AKS. See Figure 16-13.

Figure 16-12.  Select the Azure container registry

Chapter 16 Running Azure Functions in Containers

416

Once the Azure Kubernetes Service instance gets created, go to the command

prompt on your local system and log in to Azure. Provide your Azure credentials when

prompted. See Listing 16-8.

Listing 16-8.  Log In to the Azure Kubernetes Service Instance

az login

Execute the command in Listing 16-9 to authenticate with the Azure Kubernetes

Service instance that you created. Replace {AKS Name} with the name of the Azure

Kubernetes Service instance that you created, and replace {Resource Group} with the

name of the Azure Kubernetes Service resource group.

Figure 16-13.  Create AKS

Chapter 16 Running Azure Functions in Containers

417

Listing 16-9.  Authenticate with Azure Kubernetes Service

az aks get-credentials --resource-group "{Resource Group}" --name

"{AKS Name}"

Execute the command in Listing 16-10 to generate the deployment YAML file that

you will use to deploy the containerized Azure function to Azure Kubernetes Service.

Replace {ACR} with the name of the Azure container registry where you pushed the

container image earlier.

Listing 16-10.  Generate the Kubernetes Deployment YAML File

func kubernetes deploy --name "kedafunc" --image-name "{ACR}.azurecr.io/

keda_func:latest" --dry-run > deploy.yaml

A deploy.yaml file will get generated that you can apply to the Kubernetes cluster

using the command in Listing 16-11.

Listing 16-11.  Apply the Generated YAML to the Kubernetes Cluster

kubectl apply -f deployfunc.yaml

You can verify if the pod hosting the Azure function container is up and running

using the command in Listing 16-12. See Figure 16-14.

Listing 16-12.  Verify Whether the Pod Is Running

kubectl get pods

Figure 16-14.  Verify whether the pod is running

Chapter 16 Running Azure Functions in Containers

418

Now let’s execute the command in Listing 16-13 to get the external IP address that

you can use to browse to the Azure function running inside Azure Kubernetes Service.

See Figure 16-15.

Listing 16-13.  Get the External IP

kubectl get services

Browse to the external IP address. See Figure 16-16.

Figure 16-15.  Get the external IP

Figure 16-16.  Browse to the Azure function running inside Azure Kubernetes
Service

Chapter 16 Running Azure Functions in Containers

419

�Summary
In this chapter, you learned how to containerize an Azure function and run it in the

Azure Kubernetes Service cluster using KEDA. You explored what containers and

Kubernetes are and how they provide modernized hosting support. You learned how to

create an Azure container registry, push the containerized Azure function image to the

Azure container registry, and run the image in the Azure Kubernetes cluster.

The following are the key takeaways from this chapter:

•	 You can containerize your application and hosting dependencies and

run your application in the target environment.

•	 Containers are operating system–level virtualization and are

lightweight compared to virtual machines.

•	 Kubernetes orchestrates the containers and manages them.

•	 You can run the containerized application in the Kubernetes cluster

nodes that can be virtual machines or Azure container instances.

•	 Serverless nodes are Azure container instances that run the

application containers.

•	 KEDA helps you run containerized Azure functions in the Azure

Kubernetes Service cluster.

In the next chapter, you will explore how to add cognitive capabilities to Azure

Functions.

Chapter 16 Running Azure Functions in Containers

421
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_17

CHAPTER 17

Adding Cognitive
Capabilities to Your
Azure Functions
Artificial intelligence has become an important part of modern application

development. It has made its mark in every domain one can think of. Almost every app

that comes onto the market has an intelligent solution inside it. Apps from simple chat

applications to virtual assistants have cognitive capabilities.

In previous chapters, we discussed ways to develop and deploy Azure functions. You

explored different bindings and triggers of Azure functions by building applications to

solve various use cases. With the knowledge gathered in the previous chapters, you are

well equipped to build serverless solutions using Azure functions. In this chapter, you

will add one more skill to your arsenal by adding cognitive capabilities to your Azure

functions to build intelligent serverless solutions.

You will be leveraging the power of Azure Cognitive Services to build intelligent

serverless solutions with Azure Functions. In this chapter, you will learn ways to add

cognitive capabilities to your functions with the help of .NET SDKs for Azure Cognitive

Services.

�Structure of the Chapter
This chapter will explore the following aspects of HTTP triggers and Azure SQL:

•	 Getting started with Azure Cognitive Services

•	 Getting started with Azure Text Analytics

https://doi.org/10.1007/978-1-4842-7122-3_17#DOI

422

•	 Creating a serverless application to analyze feedback using sentiment

analysis

•	 Creating a language-based document classifier serverless solution

�Objective
After studying this chapter, you will be able to do the following:

•	 Create intelligent serverless solutions using the Azure Functions

service

•	 Interact with Azure Cognitive Services from Azure Functions

�Getting Started with Azure Cognitive Services
Building intelligent solutions from scratch by leveraging the power of artificial

intelligence can require highly skilled employees who have specific expertise, which

can be quite expensive. Microsoft Azure provides a set of services in Azure Cognitive

Services to help you write all algorithms from scratch to add cognitive capabilities to

your applications to make them intelligent.

With the help of Azure Cognitive Services, you will make an API call to the

appropriate service to embed the desired cognitive capability into your applications.

Azure Cognitive Services can also be consumed using the available SDKs.

Azure Cognitive Services offer five main categories of services to help with cognitive

tasks.

•	 Decision: With the help of the services in this category, you can

enable your application to make smart decisions. Services such as

Anomaly Detector, Content Moderator, and Personalizer fall into this

category.

•	 Language: With the help of the services in this category, you

can power your applications to gather and extract insights from

unstructured textual data. Services such as Text Analytics, Immersive

Reader, Translator, Language Understanding, and the QnA Maker

API all fall into this category.

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

423

•	 Search: With the help of the services in this category, you can enable

your applications to look out for web pages, images, and news over

the Internet. Bing web search falls into this category.

•	 Speech: With the help of the services in this category, you can enable

your application to have speech capabilities. Services such as Speech

to Text, Text to Speech, Speech Translation, and Speaker Recognition

fall into this category.

•	 Vision: With the help of the services in this category, you can process

and analyze image- and video-based content. Services such as

Computer Vision, Custom Vision, Face, Form Recognizer, and Video

Indexer fall into this category.

Azure Cognitive Services helps organizations and developers embrace AI with ease

to build intelligent solutions. It provides developers and organizations with the ability to

build intelligent solutions in a short time for less money than it would cost otherwise. In

this chapter, you will build two intelligent solutions using Azure Cognitive Services and

Azure Functions. In the first solution, you will build a serverless API to process, analyze,

and predict the sentiment of the feedback. Later, you will create a serverless solution for

documents depending on the language they are written in using Azure Text Analytics.

�Getting Started with Azure Text Analytics
In a world where almost 6,000 tweets are being tweeted every second, you know that

text analytics is an important area of focus. For beginners, text analysis is the process of

gathering insights from textual data to make well-informed decisions. For firms, such

textual data from various social media sites can help them understand their customers

and gather insights to make well-informed decisions by analyzing and processing such

data.

Although there are well-established algorithms like naïve Bayes, support vector

machines (SVMs), and linear discriminant analysis (LDA) that have been developed

over the years in the field of natural language processing (NLP), extensive experience

is required to build such algorithms from scratch. Azure Text Analytics allows you to

perform text analytics on unstructured data without requiring you to have expertise in

the field or worry about which algorithm to use to get the task done.

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

424

You can perform the following tasks with the help of the Azure Text Analytics API or

the SDKs:

•	 Sentiment analysis: With sentiment analysis, you can find out insights

about a person’s impression or opinion on a topic or brand from text.

Text Analytics classifies text as positive, negative, neutral, or mixed

and gives a confidence score.

•	 Key phrase extraction: With key phrase extraction, you can identify

the essence of the content or the talking point from the text.

•	 Language detection: With language detection, you can identify the

language text was written in. It returns a language code along with

the confidence score.

•	 Named entity recognition: With named entity recognition, you

can find and identity entities from text. Entities can be a place,

organization, or person.

To build a serverless API to perform feedback analysis, you will use the sentiment

analysis feature of Azure Text Analytics. To use Azure Text Analytics, you will have

to create a Text Analytics resource in Azure and get the API key along with the URL

endpoint. In the next section, you will create an Azure Text Analytics service in the Azure

portal.

�Create an Azure Text Analytics Resource
in the Azure Portal
Go to the Azure portal, search for Cognitive Services in the search box, and click it. See

Figure 17-1.

Figure 17-1.  Search for Cognitive Services

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

425

Now Click Create, as highlighted in Figure 17-2. This will pop up a side screen that

will redirect you to the Marketplace.

Type Text Analytics in the search box and press Enter. Now, select the Text Analytics

service offered by Microsoft. See Figure 17-3.

Figure 17-2.  Click Create to go to the Marketplace

Figure 17-3.  Search for the Text Analytics service in the Marketplace

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

426

Click Create, as shown in Figure 17-4, to create the Text Analytics service.

Fill in all the required information. Click “Review + create.” See Figure 17-5.

Figure 17-4.  Create the Text Analytics service

Figure 17-5.  Click “Review + create”

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

427

Note S ince you are just learning ways to use the Text Analytics service in your
functions, you will be using the free F0 tier in this chapter. With the F0 tier, you can
make 5,000 calls each month. But it is advisable to go for a standard plan if you
want to use the Text Analytics service for a production-grade application.

Now a validation check will take place on the values you entered in the previous

screen. If the validation is successful, you can click Create to create the Text Analytics

resource in Azure. See Figure 17-6.

After the resource has been created, go to the resource and click Keys and Endpoint

in the sidebar of the screen. See Figure 17-7.

Figure 17-6.  Click Create

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

428

Get the values of the key and endpoint and store them somewhere safe. You will use

them in the next section to build a serverless API to perform sentiment analysis.

�Build a Serverless API to Analyze Feedback Using
Sentiment Analysis
In this section, you’ll build an HTTP-triggered Azure function to process and perform

sentiment analysis of the feedback sent in the request payload using Azure Text Analytics

and return the sentiment of the feedback as the response to the user.

Open Visual Studio 2019 and click “Create a new project.” See Figure 17-8.

Figure 17-7.  Go to Keys and Endpoint

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

429

Select Azure Functions for the project template and click Next. See Figure 17-9.

Figure 17-8.  Create a new project in Visual Studio

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

430

Fill in the project name, location, and solution name and click Next. See Figure 17-10.

Figure 17-9.  Select Azure Functions as the project template

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

431

Select “Http trigger” as the trigger type, leave the other default values, and then click

Create. See Figure 17-11.

Figure 17-10.  Fill in the project details

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

432

Now, Visual Studio will generate an HTTP-triggered function. Let’s open the Package

Manager Console and type in the command shown in Listing 17-1 to install the Azure Text

Analytics SDK. Alternatively, you can install this SDK using the NuGet package manager.

Listing 17-1.  Install Azure Text Analytics

Install-Package Azure.AI.TextAnalytics -Version 5.0.0

Once you have installed the SDK, open the local.setttings.json file and add

the API key and endpoint of the Text Analytics service as a key-value pair, as shown in

Listing 17-2.

Listing 17-2.  Add API Key and Endpoint to local.settings.json

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

Figure 17-11.  Select “Http trigger” and Azure Functions V3

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

433

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "api-key": "Enter your API Key",

 "endpoint": "Enter your Endpoint"

 }

}

Note S toring function secrets or sensitive information in the local.settings.
json file or hard-coding such information in a variable is not advisable. We
recommend using a key vault to store function secrets.

As you add the API key and URL endpoint and install the Azure Text Analytics

SDK, let’s create a Plain Old CLR Object (POCO) class named Payload.cs. This class

will represent the data model of the request payload by deserializing it to later get the

feedback sentiment and send the model in the response to the user by updating the

feedbackSentiment property of the model. See Listing 17-3.

Listing 17-3.  Create a POCO Model Called Payload.cs

public class Payload

 {

 public string feedback { get; set; }

 public string feedbackSentiment { get; set; }

 }

Now that you have created the POCO model and updated the local.settings.

json file by adding the values of your API key and endpoint as key-value pairs, let’s start

building the feedback analyzer function. First, you will deserialize the content sent from

the user, in the request body, and store it in a variable. Then, you will have to create an

object called client of the TextAnalyticsClient type to use the Azure Text Analytics

SDK along with passing the endpoint and API key as parameters. Once we have created

the object, let’s make a call to the AnalyzeSentiment method of the client object by

passing the feedback sent in the request payload. The AnalyzeSentiment method

returns a response of DocumentSentiment with different properties such as sentiment,

confidence, and warning to name a few. In this case you are using the Sentiment

property and will assign the value of this sentiment property of the response returned

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

434

by the AnalyzeSentiment method to the feedbackSentiment property of your POCO

model. Finally, you will send an OK response along with the POCO model back to the

client. If there are any exceptions, a BadRequest response is returned to the client. See

Listing 17-4.

Listing 17-4.  Get the Feedback Sentiment

using System;

using System.IO;

using System.Threading.Tasks;

using Azure;

using Azure.AI.TextAnalytics;

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace FeedbackAnalyzer

{

 public static class FeedbackAnalyzer

 {

 �private static readonly AzureKeyCredential credentials = new

AzureKeyCredential(Environment.GetEnvironmentVariable("api-key"));

 �private static readonly Uri endpoint = new Uri(Environment.GetEnvir

onmentVariable("endpoint"));

 �private static TextAnalyticsClient client = new

TextAnalyticsClient(endpoint, credentials);

 [FunctionName("FeedbackAnalyzer")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Function, "get", "post",

Route = null)] HttpRequest req,

 ILogger log)

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

435

 {

 try

 {

 �string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

 �var data = JsonConvert.DeserializeObject<Payload>(requestB

ody);

 �data.feedbackSentiment = client.AnalyzeSentiment(data.

feedback).Value.Sentiment.ToString();

 return new OkObjectResult(data);

 }

 catch (Exception ex) {

 return new BadRequestObjectResult(ex.Message);

 }

 }

 }

}

Note  We created a static client object of type TextAnalyticsClient, as this
allows us to reuse the client object in different function invocations, instead of
creating a new object for every invocation.

�Test the FeedbackAnalyzer Function Using Postman
Let’s run the function project and start the Azure Functions Core Tools to test your

Feedback Analyzer function and copy the function endpoint. See Figure 17-12.

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

436

You will be using Postman to test the FeedbackAnalyzer API by using the URL

endpoint of the function. Let’s open Postman, one of leading collaboration platforms

for API development. Create a new collection and add a request to it to test the HTTP-

triggered Azure function you created in the previous section. Pass the value of the

feedback in the request body and click Send to invoke the FeedbackAnalyzer function

and get the response. See Figure 17-13.

Figure 17-12.  Get the URL endpoint of the FeedbackAnalyzer function

Figure 17-13.  Response from the FeedbackAnalyzer API

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

437

As shown in Figure 17-14, you get an OK response from the FeedbackAnalyzer API

along with the feedback and feedback sentiment in the response body.

�Build a Language-Based Document Classifier
Serverless Solution
In this section, you’ll further use the language detection feature of Azure Text Analytics

to classify documents based on their language in a Blob container on a scheduled basis

with the help of a timer-triggered function. Your solution will process all the documents

present in one container called source every 24 hours and classify the documents in

terms of the language they are written in; it will also store them in a separate container

called destination and delete the classified Blobs from the source container.

Open Visual Studio 2019 and click “Create a new project.” See Figure 17-14.

Figure 17-14.  Create a new project

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

438

Select Azure Functions as the project template and click Next. See Figure 17-15.

Fill in the project name, location, and solution name and then click Next.

See Figure 17-16.

Figure 17-15.  Select Azure Functions as the project template

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

439

Select “Timer trigger” as the trigger type, leave the other defaults as they are, and

click Create. See Figure 17-17.

Figure 17-16.  Fill in the project details

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

440

Visual Studio will generate a timer-triggered function named function1. Let’s

remove it and add a new timer-triggered function named DocumentClassifier. Let’s

open the Package Manager console and type in the command shown in Listing 17-1

and Listing 17-5 to install the Azure Text Analytics SDK and the Azure Blob Storage

SDK. Alternatively, you can install it using the NuGet package manager.

Listing 17-5.  Install Azure Blob Storage

Install-Package Microsoft.Azure.Storage.Blob -Version 12.8.1

Once you have installed these packages, open the local.settings.json file of your

project and add the key and endpoint from the Text Analytics resource you created

earlier in this chapter. Now, let’s create a storage account in Azure and create two Blob

containers called source and destination for the project.

All your files will initially be uploaded in the source Blob container, and then your

function will classify the documents on the basis of the language they are written in and

store them in the destination container. Once you create the storage account and the

Blob container, let’s go to “Access keys” in the side menu of your storage account screen

in the Azure portal and get the connection string. See Figure 17-18.

Figure 17-17.  Select ”Timer trigger” and Azure Function V3

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

441

You need to store this connection string in your local.settings.json file as a

key-value pair. Refer to Listing 17-6 for the local.settings.json file after adding all

the key-value pairs required for your project.

Listing 17-6.  Add API Key, Endpoint, and Connection String at local.settings.

json

{

 "IsEncrypted": false,

 "Values": {

 "AzureWebJobsStorage": "UseDevelopmentStorage=true",

 "FUNCTIONS_WORKER_RUNTIME": "dotnet",

 "key": "Enter your API key",

 "endpoint": "Enter your endpoint",

 "connectionString": "Enter your storage account connection string"

 }

}

Now that you have updated the local.settings.json file of your project, let’s

start working on your DocumentClassifier function. You will have to update the

cron expression of your function to 0 0 10 * * *. This tells your function to run every

day at 10 a.m. After you modify the cron expression, let’s create static objects of

the TextAnalyticsClient and BlobContainerClient types. You will be using the

TextAnalyticsClient type to perform language detection on the content of the

documents uploaded in your source Blob container.

Figure 17-18.  Get the storage account’s connection string

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

442

You will create two static objects of BlobContainerClient types, namely,

sourceClient and destinationClient. sourceClient references all the Blobs present

inside the source container and gives you the ability to modify all the Blobs in it, and

destinationClient does the same for the destination container.

You are going to use two static methods called GetLanguage and

UploadBlobToContainer. The GetLanguage method takes a string parameter and

uses the TextAnalyticsClient object’s DetectLanguage method to identify the

language in which the document was written. The DetectLanguage method returns

a DetectedLanguage type response. But as you are asked only for the name of the

language, you are returning the name value instead of returning a DetectedLanguage

object from your GetLanguage method.

The UploadBlobToContainer method takes three parameters, of types stream,

string, and BlobContainerClient. The UploadBlobToContainer methods use the

BlobContainerClient object passed as a parameter to upload files to the container

referenced by the object with the help of the UploadBlob method. The name of the Blob

is the value passed in the parameter named blobName, and the Blob content is the value

passed in the parameter named blobData. It wraps the UploadBlob method inside a try-

catch block to handle exceptions. If there’s an exception, the UploadBlobToContainer

will return false, and if it hasn’t run into any exception, then it will return true.

We have discussed the methods we are using in the function, so now let’s discuss the

code used in the Run method of your function. First, we are iterating through all the Blobs

present inside the source container by using the GetBlobs method of the sourceClient

object. Then we get the Blob data with the help of the GetBlobClient method and make

a method call to the GetLanguage method by passing the value of the content of the Blob

as a parameter. Assign the value returned from the GetLanguage method to a variable

called detectedLanguage.

After finding out the language in which the document is written, you make a call

to the UploadBlobToContainer method by passing the destinationClient object, an

interpolated string, and the content of the current Blob item. You pass an interpolated

string to build a string of the format {Language Name}/{Blob Name}. This will ensure

that your Blob is visible in a folder-like format in the Storage Explorer where each folder

will be the name of the language and will contain all the files written in that specific

language. You have the Blob name in this format by default; Blob storage does not

support folders or subdirectories, but you can logically group them by using the / after

the folder or subfolder name as per your requirements.

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

443

The UploadBlobToContainer returns a Boolean response after executing. If it

returns true, then you will delete the file from the source container as it has already been

classified and uploaded in the destination container along with logging the status of the

Blob classification. If the UploadBlobToContainer was unable to upload the file, then it

will return false as a response, and you will only log the information about the Blob not

being classified and upload it to the destination container and not delete this particular

Blob item. Refer to Listing 17-7 for the entire code of the DocumentClassifier function.

Listing 17-7.  Document Classifier Function

using System;

using System.IO;

using Azure;

using Azure.AI.TextAnalytics;

using Azure.Storage.Blobs;

using Azure.Storage.Blobs.Models;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Logging;

namespace LanguageBasedDocumentClassifier

{

 public static class DocumentClassifier

 {

 �private static readonly AzureKeyCredential credentials = new

AzureKeyCredential(Environment.GetEnvironmentVariable("key"));

 �private static readonly Uri endpoint = new Uri(Environment.GetEnvir

onmentVariable("endpoint"));

 �private static TextAnalyticsClient client = new

TextAnalyticsClient(endpoint, credentials);

 �private static BlobContainerClient sourceClient = new

BlobContainerClient(Environment.GetEnvironmentVariable("connectionS

tring"),"source");

 �private static BlobContainerClient destinationClient = new

BlobContainerClient(Environment.GetEnvironmentVariable("connectionS

tring"), "destination");

 [FunctionName("DocumentClassifier")]

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

444

 �public static void Run([TimerTrigger("0 0 10 * * *")]TimerInfo

myTimer, ILogger log)

 {

 foreach (BlobItem blobItem in sourceClient.GetBlobs()) {

 �BlobClient blob = sourceClient.GetBlobClient(blobItem.

Name);

 �StreamReader data = new StreamReader(blob.Download().Value.

Content);

 string detectedLanguage = GetLanguage(data.ReadToEnd());

 �bool IsUploaded = UploadBlobToContainer(destinationClie

nt, $"{detectedLanguage}/{blobItem.Name}", blob.Download().

Value.Content);

 if (IsUploaded)

 {

 sourceClient.DeleteBlobIfExists(blobItem.Name);

 log.LogInformation($"{blobItem.Name} is classified");

 }

 else

 {

 �log.LogInformation($"Failed to classify {blobItem.

Name}");

 }

 }

 }

 public static string GetLanguage(string content)

 {

 return client.DetectLanguage(content).Value.Name;

 }

 �public static bool UploadBlobToContainer(BlobContainerClient

containerClient,string blobName,Stream blobData) {

 bool flag = true;

 try

 {

 containerClient.UploadBlob(blobName,blobData);

 }

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

445

 catch (Exception ex) {

 flag = false;

 }

 return flag;

 }

 }

}

�Test the Language-Based Document Classifier
Function
To test the document classifier function, you have to run the function, but before doing

that, let’s look at the files present in the source and destination container. As shown in

Figure 17-19, the source container contains four text files. All the text files are written in

different languages.

Now let’s take a look at the files present in the destination container, as shown in

Figure 17-20. As of now, the destination container is empty and has no files uploaded

into it. Once you run your DocumentClassifier function, it will populate this container.

Figure 17-19.  Files present in source container

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

446

As you have seen all the files present in both of the containers, let’s run your

DocumentClassifier function and check the containers again. See Figure 17-21.

The DocumentClassifier function was able to classify the documents by the

language in which they were written and upload them to the destination container

successfully, as shown in the logs of your Azure Functions Core Tools.

Let’s go to the destination container again to verify this. Now the destination

container contains four folders, namely, English, Hindi, Oriya, and Afrikaans, as can be

shown in Figure 17-22. All these folders contain the files that were written in the same

language as that their folder name.

Figure 17-20.  Files present in the destination container

Figure 17-21.  Logs of the DocumentClassifier function

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

447

The function had one more functionality: to remove the files that were already

classified and uploaded to the destination container. Since your DocumentClassifier

function was able to classify and upload all the files successfully, your source container

should be empty now. You can verify that by going back to the source container, as

shown in Figure 17-23.

Figure 17-22.  Destination container after function execution

Figure 17-23.  The source container after function execution

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

448

�Summary
In this chapter, you learned about ways to create intelligent serverless solutions with the

help of Azure Functions and Azure Cognitive Services by building a feedback analyzer

app and a document classifier app. While building both serverless solutions, you learned

how to integrate the cognitive capabilities into your solution by leveraging the power of

Azure Text Analytics.

The following are the key takeaways from this chapter.

•	 Azure Cognitive Services provides REST endpoints and client-side

libraries to add cognitive capabilities in your applications.

•	 You can access the Azure Text Analytics service in the Azure portal.

•	 You can perform tasks such as language detection, sentiment

analysis, and named entity recognition tasks using Azure Text

Analytics.

•	 You can integrate cognitive capabilities into an Azure function by

using the SDKs of Azure Cognitive Services.

Chapter 17 Adding Cognitive Capabilities to Your Azure Functions

449
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_18

CHAPTER 18

Introduction to Azure
Durable Functions
You may have a scenario where the application logic is broken into smaller chunks, and

each chunk of code is hosted in an Azure function. The application consists of a couple

of Azure functions that interact with each other and exchange data and state for business

processing. You may have to execute the functions in a specific order like a workflow.

You need to orchestrate these Azure functions and make sure that the functions

maintain their data and state. Azure functions are by default stateless. They will not be

able to handle such scenarios. You need to use the service Azure Durable Functions,

which will help you to make these functions stateful and build a workflow.

You learned how to create intelligent serverless applications using Azure Cognitive

Services and Azure Functions in the previous chapter. In this chapter, you will learn how

to build and orchestrate stateful workflows using Azure Durable Functions.

�Structure of the Chapter
In this chapter, you will explore the following aspects of Azure Durable Functions:

•	 Getting started with Azure Durable Functions

•	 Benefits of Azure Durable Functions

•	 Application patterns

•	 Implementing functions with Azure Durable Functions

https://doi.org/10.1007/978-1-4842-7122-3_18#DOI

450

�Objectives
After studying this chapter, you will be able to do the following:

•	 Use Azure Durable Functions and its patterns

•	 Build a durable function

�Getting Started with Azure Durable Functions
Say you work for an e-learning company where students will complete an online course

and you need to issue a certificate based on their course completion status and if they

have paid the course fees in full. To make this scenario work, you need to design a

workflow that will perform the following steps:

	 1.	 Check whether the student has completed each of the modules in

the course.

	 2.	 Check whether the student has paid the course fees. If not, trigger

a notification to the student to pay the fees.

	 3.	 Check whether the student has passed the exam for the course.

	 4.	 Issue a certificate for the student to download if the student has

completed all the modules, paid the course fees, and passed the

exam.

Sending data from one workflow step to another is crucial for workflow-based

applications. You need to make each step of the workflow stateful. You can achieve this

scenario using Azure Durable Functions. The Azure Durable Functions extension helps

you build stateful workflows using Azure functions. It makes the Azure functions stateful.

You can build durable functions using C#, F#, and Node.js.

Durable functions comprise the following components:

•	 Client function

•	 Orchestrator function

•	 Activity function

Chapter 18 Introduction to Azure Durable Functions

451

The Activity function performs the actual business logic and acts as a step in the

workflow. The Orchestrator function invokes the Activity function and orchestrates

them as a workflow and then goes to sleep. The Activity function executes the business

functionality, and once it completes, it notifies the Orchestrator function to wake up.

The Orchestrator function wakes up, invokes the next Activity function, and then goes

to sleep again until it gets a completion status from the Activity function. The Client

function invokes the Orchestrator function. The end user or the consuming application

of the workflow invokes the Client function.

Azure Durable Functions maintains and manages its states using Table Storage

and Queue Storage. When the Orchestrator function completes execution, it pushes its

context data and state to Azure Table Storage. The Orchestrator function and the Activity

function exchange data among themselves using Azure Queue Storage. See Figure 18-1.

Figure 18-1.  Azure Durable Functions components

Chapter 18 Introduction to Azure Durable Functions

452

Note T he Azure Durable Functions service helps you build serverless workflows.
You can also build serverless workflows using Azure Logic Apps. The Azure Durable
Functions workflow is well suited for developers as you need to implement the
workflows using code. You do not need to be a coder to implement Azure Logic
Apps workflows. Azure Logic Apps come with a higher monetary cost compared to
Azure Functions. Workflows can be developed using the Logic App Designer user
interface with simple drag-and-drop and configurations.

�Benefits of Azure Durable Functions
The following are the benefits of Azure Durable Functions:

•	 You can implement function chaining scenarios where you can

invoke one function after another in a sequence.

•	 You can implement parallel execution of functions where you can

execute multiple Azure functions in parallel.

•	 You can maintain the state of the Azure functions.

•	 You can create stateful workflows.

•	 Durable functions are serverless components. You get billed for the

duration when the functions are executing in the workflow. The

underlying platform manages the scaling of the functions.

•	 It supports a wide range of programming patterns, as shown here:

•	 Fan-out and fan-in

•	 Functions chaining

•	 Monitoring

•	 Human interaction

•	 Aggregator

•	 Async HTTP APIs

Chapter 18 Introduction to Azure Durable Functions

453

�Application Patterns
You can use Azure Durable Functions to build the following application patterns:

•	 Fan-in and fan-out

•	 Function chaining

•	 Async HTTP APIs

•	 Monitoring

•	 Human interaction

•	 Aggregator

Let’s discuss each of these application patterns in detail.

�Fan-Out and Fan-In
In this pattern, a function executes the business logic and passes the data to either a set

of functions or multiple instances of a function that execute in parallel. This process

is called fan-out. These parallel functions or instances of the function further process

the data and execute the business logic. They send the processed data to another

function that aggregates the data from these parallel functions or function instances and

processes the aggregated data further. This phenomenon is called fan-in. Figure 18-2

depicts the fan-out and fan-in pattern.

Chapter 18 Introduction to Azure Durable Functions

454

�Function Chaining
In this pattern, several functions execute one after the other. The first function processes

the data and sends the data for further processing to the second function. The second

function processes the data further and sends the data to the third function and so on.

In this pattern, we chain a set of functions, with each function in the chain performing

business logic for the scenario and passing on the data and state to the next function.

Figure 18-3 depicts the function chaining pattern.

Figure 18-3.  Function chaining pattern

Figure 18-2.  Fan-out and fan-in pattern

Chapter 18 Introduction to Azure Durable Functions

455

�Async HTTP APIs
In some scenarios, you may have a long-running activity processing the business

functionality. You need to keep tracking the execution status of the long-running activity

and get the processed results once the activity completes. You can build such scenarios

using async HTTP APIs. A client application will trigger an HTTP-triggered orchestrator

client. The HTTP orchestrator client will invoke the Orchestrator function to orchestrate

the Activity functions that are executing long-running tasks. The Azure Durable

Functions workflow exposes a set of REST APIs that give the processing status and results

of the workflows. The client application can invoke these REST APIs to monitor the

completion status of the long-running tasks and get the processed results. Figure 18-4

depicts the async HTTP APIs pattern.

�Monitoring
You may have scenarios where you need to monitor events or the execution status of an

external process or another function. You can use long-running durable functions to

continuously check the events or execution status of the external process and perform

an activity when a specified condition is met. For example, you may have an Azure

function that gets triggered whenever an item gets inserted in the Queue Storage. You

need to generate a notification whenever the Azure function goes down or generates an

exception. You can have a long-running durable function executing continuously and

Figure 18-4.  Async HTTP pattern

Chapter 18 Introduction to Azure Durable Functions

456

monitoring the exceptions generated by the Azure function or monitoring the health of

the Azure function. Whenever the Azure function generates an exception or goes down,

the durable function will send a notification.

�Human Interaction
You may have a maker-checker scenario where a maker creates a request, and the

request gets forwarded to the checker for verification and approval. For example, a

loan approval system can be developed using the Azure Durable Functions workflow.

A customer invokes the Orchestrator client function of the Azure Durable Functions

workflow. The Orchestrator client function invokes the Orchestrator function and starts

the loan approval process. The Orchestrator function calls a special type of Activity

function called a Durable Timer function and sends an email to the approver for loan

approval. The Durable Timer function waits for a specified amount of time and notifies

whenever the approver approves or rejects the loan using a user interface application.

The user interface application notifies the Durable Timer function with the approval

status. The Durable Timer function completes once it gets a notification and passes on

the status to the Orchestrator function for further processing. The durable function waits

for a specified time interval and returns the control to the Orchestrator function if the

approver does not take any action within that time interval.

�Aggregator
In this pattern, the durable function aggregates event data from multiple sources,

processes the aggregated data, and makes it available for client applications to query and

use the data. You need to use durable entities to address such scenarios.

�Implement an Azure Durable Function
Let’s implement a simple Azure Durable Functions workflow using Visual Studio. The

Azure Durable Functions workflow will contain an Orchestrator Client function, an

Orchestrator function, and an Activity function. Open Visual Studio and click “Create a

new project.” See Figure 18-5.

Chapter 18 Introduction to Azure Durable Functions

457

Select Azure Functions and click Next. See Figure 18-6.

Figure 18-5.  Create a new project

Figure 18-6.  Select the Azure Functions project type

Chapter 18 Introduction to Azure Durable Functions

458

Provide the details of the functions app project and click Create. See Figure 18-7.

Select Empty for the function template. You will add a durable function to the

function app project later. Click Create. See Figure 18-8.

Figure 18-7.  Provide the project details

Chapter 18 Introduction to Azure Durable Functions

459

Right-click the function app project and click Add. Then click New Azure Function.

See Figure 18-9.

Figure 18-8.  Select Empty

Chapter 18 Introduction to Azure Durable Functions

460

Select Azure Function, add a name, and click Add. See Figure 18-10.

Figure 18-9.  Add a new function

Chapter 18 Introduction to Azure Durable Functions

461

Select Durable Functions Orchestration and click OK. See Figure 18-11.

Figure 18-10.  Provide a function name

Chapter 18 Introduction to Azure Durable Functions

462

The durable function gets created using some boilerplate code. Let’s explore the

code generated. The following functions were added:

•	 Orchestrator function named DurableFunc

•	 Activity function named DurableFunc_Hello

•	 Orchestrator Client function called DurableFunc_HttpStart

DurableFunc_HTTPStart is an HTTP-triggered function. You can invoke it to start

the Azure Durable Functions workflow. It uses the StartNewAsync method to invoke the

DurableFunc function, which is an Orchestrator function. The durable function invokes

the Activity function called DurableFunc_Hello three times and passes the Tokyo, Seattle,

and London parameter values. It uses the CallActivityAsync method to invoke the

Activity function. The Activity function called DurableFunc_Hello prepends the word Hello

with the parameter name and returns it to the Orchestrator function DurableFunc. The

Orchestrator function DurableFunc aggregates the Activity function output and returns

the output to the Client Orchestrator function called DurableFunc_HTTPStart. The Client

Orchestrator function returns the output from the Orchestrator function to the caller using

the CreateCheckStatusResponse method that builds the response output for the workflow.

Figure 18-11.  Durable Functions Orchestration template

Chapter 18 Introduction to Azure Durable Functions

463

Listing 18-1 shows the code for the durable function workflow that was generated.

Listing 18-1.  Durable Function Code

using System.Collections.Generic;

using System.Net.Http;

using System.Threading.Tasks;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.DurableTask;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Logging;

namespace DurableFuncDemo

{

 public static class DurableFunc

 {

 [FunctionName("DurableFunc")]

 public static async Task<List<string>> RunOrchestrator(

 [OrchestrationTrigger] IDurableOrchestrationContext context)

 {

 var outputs = new List<string>();

 �// �Replace "hello" with the name of your Durable Activity

Function.

 outputs.Add(await

 �context.CallActivityAsync<string>("DurableFunc_Hello",

"Tokyo"));

 outputs.Add(await

 �context.CallActivityAsync<string>("DurableFunc_Hello",

"Seattle"));

 outputs.Add(await

 �context.CallActivityAsync<string>("DurableFunc_Hello",

"London"));

 // returns ["Hello Tokyo!", "Hello Seattle!", "Hello London!"]

 return outputs;

 }

Chapter 18 Introduction to Azure Durable Functions

464

 [FunctionName("DurableFunc_Hello")]

 �public static string SayHello([ActivityTrigger] string name, ILogger

 log)

 {

 log.LogInformation($"Saying hello to {name}.");

 return $"Hello {name}!";

 }

 [FunctionName("DurableFunc_HttpStart")]

 public static async Task<HttpResponseMessage> HttpStart(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")]

 HttpRequestMessage req,

 [DurableClient] IDurableOrchestrationClient starter,

 ILogger log)

 {

 // Function input comes from the request content.

 string instanceId = await starter.StartNewAsync("DurableFunc",

 null);

 log.LogInformation($"Started orchestration with ID =

 '{instanceId}'.");

 return starter.CreateCheckStatusResponse(req, instanceId);

 }

 }

}

Now let’s execute the Azure Durable Functions workflow. The output will give

you the URL for the Client Orchestrator function that you can use to invoke the Azure

Durable Functions workflow. See Figure 18-12.

Chapter 18 Introduction to Azure Durable Functions

465

Figure 18-12.  Azure Durable Functions workflow output

Copy the URL for DurableFunc_HttpStart from the function output and send a GET

request to the URL using the Postman tool. Postman will return the supported URLs that

you can use to interact with the workflow.

Copy the statusQueryGetUri URL and send a GET request to it using the Postman

tool. In this chapter, you are using Postman to invoke the function URL. You can also

choose to use the Swagger UI or SoapUI or any other API/REST development tool. You

will get the same response as in Figure 18-13.

Chapter 18 Introduction to Azure Durable Functions

466

You can see the output for the Azure Durable Functions workflow. See Figure 18-14.

Figure 18-14.  Azure Durable Functions workflow response

Figure 18-13.  Invoke orchestrator client URL in Postman

Chapter 18 Introduction to Azure Durable Functions

467

�Summary
In this chapter, you learned about Azure Durable Functions. You explored the benefits

of using durable functions and different programming patterns supported by them. You

learned the different components of an Azure Durable Functions workflow and how it

works internally. You then implemented an Azure Durable Functions workflow using

Visual Studio.

The following are the key takeaways from this chapter:

•	 Azure Durable Functions is a serverless offering, and you get charged

only when the workflow runs.

•	 Durable functions make Azure functions stateful.

•	 You can build stateful workflows using durable functions.

•	 An Azure durable function consists of a Client Orchestrator function,

an Orchestrator function, and an Activity function.

•	 The Orchestrator function saves its state using Azure Table Storage

and exchanges data with the Activity functions using Azure Queue

Storage.

•	 Durable functions support a wide range of programming patterns.

•	 Fan-out and fan-in

•	 Function chaining

•	 Monitoring

•	 Human interaction

In the next chapter, you will explore how to create Azure functions with an Azure

Logic Apps workflow.

Chapter 18 Introduction to Azure Durable Functions

469
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_19

CHAPTER 19

Integrating Azure
Functions in a Logic
Apps Workflow
In the previous chapter, we discussed building solutions using the bindings and

triggers available for Azure Functions. There are quite a handful triggers and bindings

available for Azure Functions, but sometimes they are not enough to build solutions

to solve real-world problems. As you saw previously, you do not have any binding to

perform operations with your Azure SQL Database instance; thus, you had to use the

Data.SqlClient NuGet package. Similarly, you don’t have any triggers to run when a

tweet is sent or when a file is uploaded in Dropbox or when the temperature of a place

changes. Does that mean you cannot perform such tasks using Azure Functions? The

answer is no.

You can take multiple approaches to achieve tasks that do not have available triggers

already. One approach is to create a timer-triggered function that will run every second

or minute, call the REST APIs of the desired product or service, and execute the required

logic whenever the business requirement is satisfied. The other approach is to create an

HTTP-triggered function and configure its URL as a webhook URL. A classic example

of this use case is that of GitHub WebHooks where you can configure the webhook URL

as your function URL and select the events for which this webhook will send an HTTP

POST request to configure the webhook URL along with the payload.

Well, these are definitely two ways to solve your issue, but are there any other ways

in which you can achieve these types of tasks? Is there any other service offered by Azure

to build serverless solutions to perform such operations? The answer is yes. You can

use Azure Logic Apps to build serverless solutions to perform actions and solve your

https://doi.org/10.1007/978-1-4842-7122-3_19#DOI

470

business requirements. Azure Logic Apps is a low-code serverless offering by Azure that

contains 200+ connectors to interact and work with different products and services. The

focus of this chapter will be to learn how to build serverless solutions using Azure Logic

Apps and Azure Functions.

�Structure of the Chapter
This chapter will explore the following aspects of Azure Logic Apps:

•	 Getting started with Azure Logic Apps solutions

•	 Creating an Azure Logic Apps solution using the Azure portal

•	 Integrating an Azure function with an Azure Logic Apps solution

�Objective
After studying this chapter, you will be able to do the following:

•	 Create an Azure Logic Apps solution using the Azure portal

•	 Interact with Azure functions inside a Logic Apps workflow

�Getting Started with Azure Logic Apps
Azure Logic Apps is a low-code serverless offering of Microsoft Azure that enables you to

build enterprise-grade workflows. A workflow can be a business process. Logic Apps is an

integration platform as a service (IPaaS) offering that helps you integrate apps, services,

and systems irrespective of their hosting environment. You can build logic apps using the

Azure portal or with IDEs like Visual Studio or VS Code. The Azure Logic Apps service

contains more than 200+ connectors from different vendors and service providers that

you can use to build a workflow to solve your problems without writing any code.

Connectors act as the interface for accessing data, actions, and other events from

different services, apps, or platforms. A connector is a wrapper around the REST APIs

exposed by various service providers. If you don’t have a connector for a product or

service, you can create a custom connector provided you have the OpenAPI definition of

it. Connectors can also have actions and triggers.

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

471

Actions are operations of a particular service directed by the user to be performed in

the workflow. For example, you can use an action to get a list of all the files present in a

folder of your Google Drive or to delete a file from your Blob storage container. Triggers

in Logic Apps solutions are similar to the triggers in Azure functions. They notify your

apps when an event occurs. For example, a recurrence trigger will notify your app to run

at a uniform interval defined in the recurrence trigger.

The following are the advantages of Azure Logic Apps:

•	 Highly extensible

•	 Pay-per-execution billing model

•	 Enterprise-grade integration

•	 Supports versioning

•	 200+ connectors

•	 Reusable

•	 Tooling support in Visual Studio and VS Code

�Create an Azure Logic Apps Solution in the Azure
Portal
In this section, you will create a Logic Apps solution that will act as an API, take a name

from the request body, and return a response concatenating the name with Hi.

Go to the Azure portal. Type Logic app in the search box and click the result.

See Figure 19-1.

Figure 19-1.  Click “Logic apps”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

472

Let’s click Add and then Consumption to create the Logic Apps solution. If you have

any existing logic apps, you can find them on this screen. See Figure 19-2.

You will be prompted to enter the subscription name, resource group name, and

logic app name; then select the nearest region. Click “Review + create.” See Figure 19-3.

Figure 19-2.  Click Add and then Consumption

Figure 19-3.  Click “Review + create”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

473

You will see a summary of the configuration that you entered in the previous screen.

Click Create to provision the Logic Apps solution. A validation check will be done in the

background before the resource provisioning begins. See Figure 19-4.

You can see the provisioning status on this screen. Once the deployment is complete,

Click “Go to resource.” See Figure 19-5.

Figure 19-4.  Click Create

Figure 19-5.  Click “Go to resource”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

474

On the logic app’s screen, click “Logic app designer,” which is present in the

Development Tools section in the side menu. Here you will find multiple templates to

get started. Click the “When a HTTP request is received” template as you want to build

an API in this section. See Figure 19-6.

This will create a Logic Apps workflow with a trigger of type “When a HTTP request

is received.” It will be accepting POST requests. Once you save the workflow, you will

get the URL to send requests to your Logic Apps solution. Click “Use sample payload to

generate schema” to define the request body JSON schema. See Figure 19-7.

Figure 19-6.  Click “Logic app designer”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

475

As you want to send a name in your request payload, let’s enter { “name”:”” } as the

sample JSON payload, as shown in Figure 19-8, and click Done. See Figure 19-8.

Figure 19-7.  Click “Use sample payload to generate schema”

Figure 19-8.  Click Done

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

476

The response body JSON schema will be generated based on the sample JSON

payload that you entered on the screen shown in Figure 19-8. This helps Logic Apps to

understand the request payload data and store the JSON values as dynamic content to

use as variables in other actions of the workflow. Click + New to add an action to return a

response to the user. See Figure 19-9.

You will see multiple connectors along with the related actions and triggers. Enter

response in the search box and then click the Response Request option present in the

Actions section. See Figure 19-10.

Figure 19-9.  Click “+ New step”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

477

This will add a response action to your workflow. Enter 200 as the status code. In the

textbox for the body, enter Hello followed with a space, and then search for name in the

Dynamic content menu and click it. This will send a “Hello {name}” response to the user,

where the name is the value passed in the request payload by the user. After entering all

the required fields, click Save. See Figure 19-11.

Figure 19-10.  Click Reponse Request

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

478

With this you have created an API using Logic Apps. To test it, let’s click “When a

HTTP request is received.” Copy the value present for the HTTP POST URL here. See

Figure 19-12.

Figure 19-11.  Click Save

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

479

To test the logic app, open Postman and create a request. Since your logic app will

accept only POST requests, select POST as the request type and then paste the URL

you earlier copied from your Logic Apps solution. In the request body, send a name

along with its value in JSON format and click Send. As shown in the response body in

Figure 19-13, you get the desired response from your Logic Apps solution.

Figure 19-12.  Copy the HTTP POST URL

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

480

�Add Azure Functions in Logic Apps Workflows
In this section, you will create a Logic Apps solution to get the filename and file content

from the request payload. Your logic app will create a file and store it in your Google

Drive after encrypting the file content with the help of an Azure function. You will be

using the Caesar cipher as your encryption algorithm. At the end of this section, you will

be able to work with the Google Drive connectors along with exploring ways to integrate

an Azure function in your Logic Apps workflow.

Note T he Caesar cipher is an encryption algorithm that works by shifting each
letter of the message by a certain number of letters based on the encryption key.
For example, with the encryption key as 1, your algorithm will replace A with B, C
with B, and so on.

Go to the Azure portal. Type in function app in the search box and click Function

App. See Figure 19-14.

Figure 19-13.  Click Send

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

481

Click + Create to create a function app. See Figure 19-15.

You will be prompted to enter the subscription name, resource group name, function

app name, publish method, runtime stack, and version, and to select the nearest region.

Click “Review + create.” See Figure 19-16.

Figure 19-14.  Click Function App

Figure 19-15.  Click + Create

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

482

You will see a summary of the configuration that you entered in the previous screen.

Click Create to provision the function app. A validation check will be done in the

background before the resource provisioning begins. See Figure 19-17.

Figure 19-16.  Click “Review + create”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

483

You can see the provisioning status on this screen. Once the deployment is complete,

click “Go to resource.” See Figure 19-18.

Figure 19-17.  Click Create

Figure 19-18.  Click “Go to resource”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

484

Now click Functions and then click + Add to create a function in your function app.

Set the “Development environment” option to “Develop in portal” and then choose

“HTTP trigger” as the template type. Then click Add. See Figure 19-19.

This will create an Azure function named HttpTrigger1, which will contain

boilerplate code to return a message along with the name passed in the query string or

request body payload. You can click Code + Test to view the code of the function. Let’s

rewrite this function to accept a message from the request body and encrypt it using

the Caesar cipher. Listing 19-1 shows the modified function code. You define two static

methods, Encrypt and CharEncrypt, here. The Encrypt method accepts the message

along with a key. It then iterates through all the characters of the message and calls the

CharEncrypt method. The CharEncrypt method shifts the value of the character to the

next ASCII value when the character is between a–z or A–Z and returns the char value

to the Encrypt method that will concatenate this string to a new string named output.

After the iteration through all the characters of the message is complete, it will return the

encrypted message to the user in the response body.

Figure 19-19.  Click Add

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

485

Listing 19-1.  Modified Code of the HttpTrigger1 Function

#r "Newtonsoft.Json"

using System.Net;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Primitives;

using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req, ILogger log)

{

 log.LogInformation("C# HTTP trigger function processed a request.");

 string requestBody = await new StreamReader(req.Body).ReadToEndAsync();

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 string message = data.MessageContent;

 string responseMessage = Encrypt(message,1);

 return new OkObjectResult(responseMessage);

}

static char CharEncrypter(char ch, int key)

{

 if (!char.IsLetter(ch))

 {

 return ch;

 }

 char d = char.IsUpper(ch) ? 'A' : 'a';

 return (char) ((((ch + key) - d) % 26) + d);

}

static string Encrypt(string input, int key)

{

 string output = string.Empty;

 foreach (char ch in input)

 output += CharEncrypter(ch, key);

 return output;

}

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

486

Now that your function has been developed and is running, let’s create your logic

app.

Go to the Azure portal. Type Logic App in the search box and select “Logic apps” in

the results. See Figure 19-20.

Click + Add and then click + Consumption. See Figure 19-21.

You will be prompted to enter the subscription name, resource group name, and logic

app name, and to select the nearest region. Click “Review + create.” See Figure 19-22.

Figure 19-21.  Click Add and then Consumption

Figure 19-20.  Search for Logic Apps

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

487

You will see a summary of the configuration that you entered on the previous screen.

Click Create to provision the Logic Apps solution. A validation check will be done in the

background before the resource provisioning begins. See Figure 19-23.

Figure 19-22.  Click “Review + create”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

488

You can see the provisioning status on this screen. Once the deployment is complete,

click “Go to resource.” See Figure 19-24.

On the logic app’s screen, Click “Logic app designer,” which is present in the

Development Tools section of the side menu. Here you will find multiple templates to get

started. Click the “When a HTTP request is received” template because you want to build

an API in this section. See Figure 19-25.

Figure 19-23.  Click Create

Figure 19-24.  Click “Go to resource”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

489

This will create a Logic Apps workflow with a trigger of type “When a HTTP request

is received.” It will be accepting POST requests. Once you save the workflow, you will

get the URL to send requests to your Logic Apps solution. Click “Use sample payload to

generate schema” to define the request body JSON schema. See Figure 19-26.

Figure 19-25.  Click “When a HTTP request is received”

Figure 19-26.  Click “Use sample payload to generate schema”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

490

As you want to send a name in your request payload, let’s enter the sample JSON

payload as follows and as shown in Figure 19-27:

{

 "FileName":"",

 "Message":""

}

Click Done.

The response body JSON schema will be generated based on the sample JSON

payload that you entered in Figure 19-27. This helps Logic Apps to understand the

request payload data and store the JSON values as dynamic content to use as variables in

other actions of the workflow. Click + New to add an action to call your Azure function to

encrypt the message content. See Figure 19-28.

Figure 19-27.  Click Done

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

491

You will see multiple connectors along with the related actions and triggers. Enter

Azure Function in the search box and then click the “Choose an Azure function” option

present in the actions. See Figure 19-29.

Figure 19-28.  Click “+ New step”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

492

Since there can be multiple function apps in your subscription, you will have to

select one. Click the EncryptFunc function app. See Figure 19-30.

Figure 19-29.  Click “Choose an Azure function”

Figure 19-30.  Click EncryptFunc

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

493

Since a function app can contain multiple functions, you will have to select the

function. Let’s click the HttpTrigger1 function. See Figure 19-31.

As your function is expecting a MessageContent from the body of the request

payload, you need to define MessageContent. Define a JSON payload with a key named

MessageContent with the value of the message sent in the request payload of your “When

a HTTP request is received” trigger. It can be found in the “Dynamic content” menu.

After defining the request body, click “+ New step.” Your function will take this message,

encrypt it, and return the encrypted message in the request body. See Figure 19-32.

Figure 19-31.  Click HttpTrigger1

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

494

Enter Google Drive in the search box and select the “Create file” action to create a

file in Google Drive. See Figure 19-33.

Figure 19-32.  Define the request body and click “+ New step”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

495

Now, you will have to click “Sign in” to log in using your Gmail account. This is a

mandatory step to allow access to your Logic Apps solution to create files in your Google

Drive. See Figure 19-34.

Figure 19-33.  Click “Create file”

Figure 19-34.  Click “Sign in”

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

496

After logging in using your Gmail account and giving your logic app the appropriate

permissions, you need to define the folder path, filename, and file content. In this case,

let’s define the folder name as /LogicApp. If your drive does not have a folder named

LogicApp, then your Logic Apps solution will create it first. Then you need to enter the

filename. Here, you define the filename with a value passed in the request payload

of your trigger of type “When a HTTP request is received.” Finally, you have to define

the file content. You define the value of the file content with the value returned in the

response body of your HttpTrigger1 function. See Figure 19-35.

After entering all the required fields, click Save.

Now the URL to trigger your Logic Apps solution will be generated. Let’s go to the

trigger “When a HTTP request is received” and get the HTTP POST URL. See Figure 19-36.

Figure 19-35.  Enter the required fields for the action

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

497

To test your logic app, open Postman and add a request. Paste the HTTP POST

URL that you copied from your logic app in the URL bar and define the request type as

POST. In the request body, send a name along with its value in JSON format and click

Send. As shown in the response body in Figure 19-37, you get the desired response from

your logic app. This will trigger the logic app and start the workflow.

Figure 19-36.  Copy the HTTP POST URL

Figure 19-37.  Click Send

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

498

The logic app will encrypt the message sent in the request payload and then store it

in a folder called LogicApp with the filename sent in the request payload.

If you go your Google Drive and check in the LogicApp folder, you will see a file

created with the filename sent in the request payload. See Figure 19-38.

As shown in Figure 19-39, your logic app has created the file in the Google Drive

inside a folder called LogicApp along with encrypting and storing the message sent in the

request payload using the Caesar cipher algorithm.

Figure 19-38.  File created by the logic app

Figure 19-39.  Encrypted message content

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

499

�Summary
In this chapter, you learned about the Logic Apps service and ways to create a serverless

workflow using Logic Apps in the Azure portal to solve different problems with the help

of different connectors, actions, and triggers. First, you created a serverless API using the

Logic Apps service app and tested it with Postman using triggers and actions. Then, you

looked into ways to integrate an Azure function into a Logic Apps workflow and used the

response returned from the function in other actions of your workflow. You also explored

ways to use the Google Drive connectors by using the “Create file” action in your

workflow to create a file with the message shared in the response of your Azure function.

Logic Apps solutions are a perfect place to start building low-code serverless workflows.

In the next chapter, you will look into some of the best practices followed by industry

leaders while building, designing, and deploying serverless workloads.

Chapter 19 Integrating Azure Functions in a Logic Apps Workflow

501
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3_20

CHAPTER 20

Best Practices and
Pitfalls to Avoid
We have explored different concepts of the service called Azure Functions in detail.

You have learned about the available mechanisms to build an Azure function using C#

and deploy it to the Azure environment. You also explored how to create Azure DevOps

pipelines for Azure functions. You created several Azure functions based on frequently

used triggers and bindings and learned about many important aspects that will help

you build enterprise-grade solutions using functions. By now, you have all the necessary

knowledge to work with functions in production scenarios.

You learned how to integrate Azure functions with Logic Apps solutions in the

previous chapter. In this chapter, you will explore the best practices that you should

follow while designing and building functions.

�Structure of the Chapter
In this chapter, you will explore the following design aspects for the Azure Functions service:

•	 Design guidelines and best practices

•	 Pitfalls to avoid

�Objectives
After studying this chapter, you will be able to do the following:

•	 Design efficient serverless solutions using Azure Functions

•	 Understand the do’s and don’ts of designing and building functions

with Azure Functions

https://doi.org/10.1007/978-1-4842-7122-3_20#DOI

502

�Design Guidelines and Best Practices
You must follow design guidelines and implement best practices while building

solutions for Azure Functions. Following best practices will ensure that you build

efficient, robust, fault-tolerant, highly available, and highly scalable solutions. Azure

Functions is a serverless service, and you do not have any control over the underlying

hosting infrastructure and how each function will scale. So, you must design the

solutions based on Azure Functions to run on the underlying infrastructure in an

optimized manner and scale per the business requirements. Though you do not have

any control over the underlying code, you can design your solution efficiently and utilize

the underlying infrastructure and the hosting environment optimally. You just have to

pick a design that best suits your business requirements. For example, if you need to

build a long-running task that will run on Azure Functions, it may not be a good idea

to host this long-running task on a Consumption Plan. The Consumption Plan can run

your task for 10 minutes after which the execution will get timed out. In other words, you

cannot run any code in an Azure function for more than 10 minutes on the Consumption

Plan. You also need to decide on an efficient way to manage and monitor the functions

executing your application code.

Let’s explore some of the best practices and design guidelines listed here that you

must follow to build a solution based using the Azure Functions service:

•	 Decide whether to use functions or not for your scenario

•	 Choose the best programing language

•	 Choose the best hosting plan

•	 Pick a stateful or stateless solution

•	 Mitigate delay startups

•	 Get the right bill fitting your budget

•	 Handle long-running code

•	 Facilitate integration and communication among other Azure and

external services

•	 Identify and manage the bottlenecks

•	 Make your solution fault tolerant

Chapter 20 Best Practices and Pitfalls to Avoid

503

•	 Secure the APIs developed using Azure Functions

•	 Facilitate efficient monitoring and debug failures

•	 Incorporate DevOps practices and bring in an infrastructure-as-code

(IaC) approach

•	 Bring in a defensive programming approach

�Decide to Use Functions or Not for Your Scenario
In an ideal scenario, functions are serverless offerings. You do not have any control

over the underlying infrastructure or the hosting environment. You do not even have

any control over the scaling aspects; the underlying infrastructure scales as and when

the application needs. So, you must validate whether your code can run in a serverless

offering or not.

You may have scenarios where you need greater control over the hosting

environment or need to install some additional software to support the execution of

your code. In such scenarios, you cannot execute your code on Azure Functions. You

do not have an option to manipulate the underlying hosting environment or install any

software on the underlying infrastructure in the case of Azure Functions. You may have

two options here. You can either look for a platform-as-a-service (PaaS) offering for

the additional software that you need and consume the software from that PaaS-based

software or choose to host your application on an infrastructure-as-a-service (IaaS)

virtual machine. For example, say you have developed a .NET Core API that uses Apache

Kafka. On the on-premises server, you can install Apache Kafka and host the .NET Core

API project. If you are planning to host the API on Azure Functions, you should use

Azure Service Bus, an alternative PaaS service for Apache Kafka on Azure, and then host

the .NET Core API on Azure Functions. Alternatively, you can use virtual machine and

install both the components together on the virtual machine.

In the same .NET Core API and Apache Kafka example, the API code in the .NET

Core API project might run for a longer duration. Azure functions are best suited to run

code for a short duration. In such scenarios, you should consider hosting your code on

Azure WebApp and using the Azure Service Bus instead of Apache Kafka. Alternatively,

you can choose to use Azure virtual machines. In the case of pure serverless functions,

you use the Consumption Plan. However, you can use a Dedicated Plan that is the same

as the App Service Plan, because using the Dedicated Plan is almost the same as using

Azure WebApp.

Chapter 20 Best Practices and Pitfalls to Avoid

504

Using a PaaS solution gives you greater control over the scaling aspects. You can

define your autoscale rules or even choose to scale manually. If you need greater control

over the scaling aspects, prefer hosting your code on Azure WebApp instead of Azure

Functions.

Note T o sum up, if you need greater control over the hosting environment, then
host your code on virtual machines. If you can find an alternate PaaS service for
the code dependency, then go for Azure WebApp. You get greater control over the
scaling aspects in the case of Azure Web App and virtual machines.

�Choose the Correct Programing Language
The choice of programming language for your application is highly crucial. You can use

various programming languages such as C#, Java, Python, TypeScript, PowerShell, and

many more to implement an Azure function. However, before choosing a programming

language, validate if that programming language can easily handle all the requirements

for the scenario. There can be a scenario where a supported programming language

covers part of the requirements, and another programming language supports the rest.

For example, the application to be hosted on the function app needs to interact with a

third-party application that does not expose REST endpoints. Instead, the third-party

application supports using a Java package to connect to the application. In this case, you

need to identify all the necessary code that interacts with this third-party application and

then break the application code into multiple chunks. The chunks using the Java package

to interact will use functions based on the Java programming language, and all the other

chunks can use C#-based functions. In such cases, think of splitting the requirements

across multiple Azure functions based on different supported programming languages.

One more challenge we face while migrating the workloads to the cloud is a

developer’s existing skills. You may find that some developers do not have the right

skills to build the code using the programming language you have chosen for an Azure

function. In such scenarios, you may choose to cross-train your developers with the

necessary skills needed for the selected programming language, or you can check

whether your function can be implemented with workarounds using the developer’s

existing skills.

Chapter 20 Best Practices and Pitfalls to Avoid

505

�Choice of Hosting Plan
Selecting the right hosting plan for the Azure function is an important design aspect.

If you plan to build a pure serverless scenario, you can choose to use the Consumption

Plan. The following are the characteristics of a Consumption Plan:

•	 Pay only when the Azure function executes

•	 Runs for a short time interval

•	 No control over underlying infrastructure or hosting environment

•	 No control over how the Azure function scales

If you have code that runs for a short time interval, you may choose to use the

Consumption Plan. The underlying infrastructure will manage all the scaling aspects for

your Azure function. If the incoming load increases, the underlying infrastructure adds

new instances for the Azure function and balances the load. When the load decreases,

the additional instances get decommissioned automatically. You cannot control how

the functions scale and the number of instances that get removed and added as part of

scaling. You pay for all the function instances that get added. However, you get billed

only for the time interval when your code runs. If you have a function that runs for a

short time interval and you do not need to control the Azure function’s scaling aspects,

you should choose the Consumption Plan.

The function does its work and goes to sleep once the execution completes. When

you need to execute the function for the next time, it is not instantaneous. It wakes up

from the sleep state once it gets triggered and starts executing. So, there is always a

delay in serving the request when the function awakes from the sleep state. This delay

in serving the request is referred to as the cold-start phenomenon. However, once the

function is active, you will not face the cold-start phenomenon as long as the function

does not go into the sleep state. To avoid this cold-start problem, you can use the

Premium Plan. The Premium Plan guarantees that at least a single instance is always

available to serve your incoming requests. You also get some level of control over the

compute requirements by choosing one of the tiers supported by the Premium Plan.

You may have a requirement where the Azure function runs for a longer duration.

For example, if you already have an App Service Plan, you can share it with an Azure

function hosting the long-running code. In such a case, you can use a Dedicated Plan or

Chapter 20 Best Practices and Pitfalls to Avoid

506

an App Service Plan. However, Dedicated Plans are not true serverless functions and are

the same as App Service Plans. You can define the autoscale settings and get complete

control over how the function scales.

Note T o sum up, if you have a true serverless scenario and your code runs for a
short duration, then choose the Consumption Plan. To avoid cold-start issues, you
can either use the Premium Plan or use the Dedicated Plan. You can also use the
Dedicated Plan if you have long-running code and you need greater control over
how the function scales.

�Pick a Stateful or Stateless Solution
You need to evaluate the customer scenario and decide whether you need to pass

the execution state from one function to another. For example, say you are building a

shopping cart application. You have a function that validates the customer order and

passes on the payment status to the following function that processes the order if the

payment is complete. In this scenario, you need to pass data from the first function

to another. You may have a more complex scenario where you need to build multiple

functions, and each function executes like a workflow. For example, you may have two

functions processing data, and these two functions will send the data to a third function

that will aggregate the data and process it further. You need to build a stateful solution

for all such scenarios. You can orchestrate stateful functions workflows using Azure

Durable Functions. We should use the Azure Durable Functions service for all such

scenarios where you can facilitate exchanging data and state among functions.

You may have simple scenarios such as executing code based on a schedule or

building an Azure function set that performs CRUD operations and gives you the data

results when invoked using an HTTP trigger. In such scenarios, you can use Azure

Functions instead of Azure Durable Functions as you are not interested in maintaining

and exchanging data among the functions.

Chapter 20 Best Practices and Pitfalls to Avoid

507

Note  You can also build workflow using Azure Logic Apps. For the stateful
scenarios discussed, you can use Logic Apps instead of Durable Functions.
However, Durable Functions is best suited for programmers. Programmers can
customize the implementation to a larger extent using Durable Functions.

�Mitigate Delay Startups
Azure functions execute when triggered. Once they complete execution, they go into an

idle state and finally into a sleep state. Azure functions wake up and start executing only

when they are triggered. However, the functions do not start executing instantaneously

when triggered. They take some time to wake up from the sleep state and get warmed

up before they can start processing the request. As mentioned, this phenomenon is

referred to as the cold-start phenomenon. If you are building a real-time application,

then the function needs to be active at all times. It must execute as soon as it gets

invoked. You must have at least a warmed-up instance that can start execution as soon

the function gets triggered. For all such scenarios, you cannot use Azure functions

running on a Consumption Plan. You may choose to design an alternative solution using

Azure WebApp or some other service that will take care of the real-time needs of the

application. Alternatively, you can choose to run your Azure functions on a Premium

Plan. The Premium Plan ensures that at least one of the instances is always up and ready

to serve an incoming request.

For example, say you are building an Internet of Things (IoT) application that

monitors the temperature of a room. If the temperature goes beyond a particular limit,

the IoT application needs to invoke an Azure function that can instantly generate a

notification or a warning. You cannot run this Azure function on the Consumption Plan

as you may encounter a delay in starting up the Azure function when triggered, and this

will delay the generation of the notification. If the notification gets delayed, then there

can be severe consequences for the apparatus and systems in the room being monitored.

To address such scenarios, you should use a Premium Plan or look for an alternative

PaaS service to generate notifications for the system on demand.

Chapter 20 Best Practices and Pitfalls to Avoid

508

�Get the Correct Bill to Fit Your Budget
Cost planning is an essential aspect while designing a cloud-based solution for your

application. In Azure Functions, you do not have control over the scaling aspects of

the hosted application. New instances get added on the fly when the incoming load

increases, and you get billed for all the instances that get added. However, you get

billed for the period when the function executes on that instance. You may have a

scenario when your application needs to scale exponentially during peak hours. In

such scenarios, new instances get added on the fly to handle the incoming traffic, and

your cost spirals exponentially. You may not have factored in the exponential scaling

while designing the Azure function. In such scenarios, you must consider all the scaling

scenarios and deduce the actual cost incurred for the Azure function. You may also

choose options to control the degree of scaling and plan the number of instances the

Azure function can scale so that the cost incurred for the Azure function is well within

the limit.

�Handle Long-Running Code
Azure functions are best suited to host code that executes for a shorter duration.

However, you may have scenarios where you need to run your code for a longer

duration. You should consider breaking the code into smaller chunks and running each

of these functions in an Azure function in such a scenario. You may have a scenario

where you need to run a long-running application. For example, you need to run a

polling application that executes for a longer time interval. You may have challenges

when splitting such applications into smaller chunks. You can choose to run the Azure

function on a Dedicated Plan that allows code to run for a longer time interval to address

such scenarios. Alternatively, you can choose to run the Azure function on a web job as a

background process or WebApp.

Note  You can break the long-running code into smaller chunks and run each of
these smaller chunks in an Azure function. In some scenarios where you cannot
break down the code into smaller units, you can host the code on an Azure function
running on the Dedicated Plan.

Chapter 20 Best Practices and Pitfalls to Avoid

509

�Facilitate Integration and Communication Among Other
Azure and External Services
You may need to integrate Azure functions with other Azure services or external services.

For example, the Azure function needs to pick the data from the Apache Kafka queue

and process it. In all such scenarios, check whether there is an existing binding available

to interact with the service. If there are no existing bindings available, try to build a

custom binding to help you interface with other services and exchange data. Bindings

help you interact with other services declaratively, and you do not need to write much

code to get this working. However, suppose you see that you do not have an existing

binding that supports your scenario, and it is not easy to implement a custom binding

for that scenario. In that case, you can choose to implement custom code in the Azure

function or build an external component that can facilitate communication with the

external service.

You need to make sure you can communicate with other Azure services and the

external component securely. Make sure you bring in the best security practices to

make sure that your implementation is secured, reliable, and fault tolerant as much as

possible. The security practices can include configuring cross-origin resource sharing

(CORS) for your function access, monitoring the incoming request header and the

body parameters, filtering out the unwanted or malicious requests, validating the

authentication and authorization for the function app, and more.

�Identify and Manage the Bottlenecks
Azure functions are serverless components, and the underlying infrastructure takes care

of all the scaling needs. The functions can scale to a considerable amount automatically

to manage the incoming loads. However, the Azure functions may interface with other

PaaS-based or IaaS-based services that can scale within a particular limit. For example,

you have an Azure function running on the Consumption Plan. The Azure function

inserts data into an Azure SQL Database instance. During peak hours, a large number

of concurrent requests hit the Azure function, and the function scales to a large number

of instances to handle the incoming traffic. Each of these function instances may hit

the Azure SQL Database instance at the same time. Azure SQL Database may not be

able to scale to that extent and handle the incoming traffic. This action will result in a

performance bottleneck for the Azure SQL Database instance. Even though the Azure

Chapter 20 Best Practices and Pitfalls to Avoid

510

function can scale and handle the incoming load, the SQL Database instance cannot

scale to that extent. Your solution as a whole incurs performance bottlenecks. You must

identify all such scenarios and implement strategies to handle them. You may need to

control the degree of concurrency for the Azure functions using queuing mechanisms.

You can add the items to be processed in a queue and then send a finite number of items

to the Azure function for processing to avoid spinning out a large number of instances

while scaling out to manage the incoming load.

�Make Your Solution Fault Tolerant
You must make your solution fault tolerant. If the Azure functions fail to process the request,

you must have mechanisms to process the request again. You should have a robust retry

mechanism in place. The retry count should be a finite number and easily configurable for

the solution. For example, if the function fails to process a request, it should send the failed

requests to a queue and accumulate all the failed requests. After a specific time interval, it

should pick up items for the failed queue one by one and process the request.

You may have a scenario where the Azure function picks up an item from the

queue and processes the item. The Azure function may encounter an issue where the

function will pick up the item but cannot process it due to the unavailability of another

dependent service. This action will result in the function picking up the items from the

queue and not processing them. You end up losing all the items in the queue, and none

of the items is processed. In all such scenarios, you must have a circuit breaker pattern

implemented. If the function fails to process the item in the queue, it should not pick the

next item in the queue. It should not pick any item until the depending service is up and

the items can get processed. Also, it should add the failed item in another queue to retry

processing it later.

Note T he function app can invoke other services either running in the Azure
environment or running outside Azure in the on-premises environment or other
clouds. These services may fail to process the requests, and the function app will
keep invoking these services again and again even if these services are failing.
The circuit breaker pattern will help in monitoring these service calls. After a
reasonable number of continuous failures, it will instruct the function app not to
call these services as if you are breaking the circuit.

Chapter 20 Best Practices and Pitfalls to Avoid

511

There can be many scenarios where we need to have a fault-tolerant mechanism in

place. It is highly essential to incorporate fault-tolerant mechanisms so that the Azure

function can efficiently execute the business functionality.

�Secure the APIs Developed Using Azure Functions
You build APIs using HTTP-triggered Azure functions. These APIs may perform a wide

range of actions that can be either simple CRUD operations or complex business logic

processing. You must secure these APIs to prevent unauthorized access. The best way

to secure them is by integrating the HTTP-triggered Azure functions with the Azure

API Management service or an alternate third-party service similar to this. All your

requests for these functions will get routed through the API Management service. You

can configure and manage the request and response parameters in the header and the

body, configure CORS settings, decide on whom to allow and whom not to allow, and

do many such activities using the API Management service. You can even integrate

the API Management service with Azure Active Directory and perform OAuth-based

authentication.

�Facilitate Efficient Monitoring and Debug Failures
You must ensure that you integrate Application Insights or any other alternative

monitoring and logging third-party solution with Azure Functions. Logs and metrics

help you to debug applications. In the case of Azure Functions, you do not have access to

the underlying code hosting infrastructure. So, you must log all information and failures

to figure out the root cause and use the logs for audit activities.

Application Insights provides an efficient mechanism to capture logs and metrics.

You get rich visualizations of the metrics and logs that help you analyze your application,

hosting infrastructure, and hosting environment with ease.

�Incorporate DevOps Practices and Bring in an IaC
Approach
You should avoid working with Azure functions in the portal and build automation to

create, deploy, and manage Azure functions. You can create automation scripts that will

help you automate your interaction with an Azure function. Automation reduces manual

Chapter 20 Best Practices and Pitfalls to Avoid

512

errors, and you will benefit in the long run. For example, say you need to replicate

hundreds of Azure functions in the production environment of your customer. It will take

a lot of time if you are creating these Azure functions using the portal. You may be prone

to make mistakes as this process is repetitive and manual. To address such scenarios

efficiently, you should build automation that will help you create Azure functions fast

and with zero errors.

You can use the Azure CLI, Azure PowerShell, and IaC offerings like Terraform or Chef

to build automation for your Azure functions. You can also use ARM templates to build

the automation solution. Using Azure DevOps, you can build the IaC pipeline to spin up

the Azure functions, continuous integration to build and package the function code, and a

continuous deployment pipeline to deploy the package to the Azure functions.

DevOps-mature organizations prefer using automation solutions for creating

and managing cloud resources and infrastructure. You can generate logs for your IaC

activities to analyze and audit in the future.

�Bring in a Defensive Programming Approach
Applications can run into exceptions at runtime. You should follow a defensive approach

while processing the business functionality during runtime exceptions and failures. For

example, say your function is processing a couple of images uploaded in Blob Storage.

After processing 30 images, an exception occurs, and the function tries to process the

images again starting from the first image. As a good practice, the function should

not process the first 30 images as they have been already processed, and it should try

to process the images starting from the 31st image. In the defensive programming

approach, the function should resume processing precisely from where it left off when

the exception occurred. Alternatively, you can insert the failed records in a dead-letter

queue or a poison queue and try processing the records in the poison or dead-letter

queue instead of processing all the records.

�Pitfalls to Avoid
The following are some of the pitfalls you must avoid while designing applications using

the Azure Functions service:

•	 Sharing functions in a single function app service

•	 Processing the input data one piece at a time

Chapter 20 Best Practices and Pitfalls to Avoid

513

•	 Hosting the production and development functions in the same

function app service

•	 Sharing storage accounts across function app services

�Sharing Functions in a Single Function App Service
Do not keep all your functions in a single function app service. If you have too many

functions in an app service, your function app may not get enough compute resources

to scale and perform optimally. Analyze the resource compute requirements carefully

and then plan the number of functions you can host in a function app service. You can

logically group the Azure functions based on performance or scaling aspects of the

business functionality they are performing.

�Processing the Input Data One Piece at a Time
Do not keep processing the input data one by one. You make a round-trip, and the

function keeps itself busy every time you get input data. The worst is when you are

getting the input data as part of the triggers. The functions need to be triggered again and

again. Try to get the input data in batches and process the data in batches. This action

will increase the performance.

�Hosting the Production and Development Functions
in the Same Function App Service
Do not use the same function app service to host production and development

functions. Keep the function app services separate for different scenarios. A function app

service runs on a hosting plan. The hosting plan defines the underlying infrastructure

and the computing needs for the function app service. If you are using the same hosting

plan across multiple function apps, the underlying infrastructure will be shared,

impacting the function app’s performance. A function app running in a development

environment may need less computing power than a function app running in an

actual production environment. So, you need a lower hosting plan in the development

environment as compared to the production environment. Hence, it is advisable to

have a separate function app service running on a hosting plan of its own as per the

computing needs. Try to leverage deployment slots as much as possible. You may plan

Chapter 20 Best Practices and Pitfalls to Avoid

514

to have a deployment slot for the staging environment and a slot for the production

environment. You can promote new code changes to the staging slot, test the code in the

staging slot, and once all your test passes, swap the code in the staging slot with the code

in the production slot. The new code changes will go to the production slot, and the old

code running in the production slot earlier will be there in the staging slot. This swap

mechanism will ensure that the old production code is intact in the staging slot and can

be rolled back into the production slot if needed.

�Sharing Storage Accounts Across Function App Services
You must associate a storage account with a function app service while creating it.

Do not share storage accounts across function app services that are hosting functions.

Sharing storage accounts will bring down the performance of Azure functions, and

in some scenarios each of the functions may generate a high volume of storage

transactions.

�Summary
In this chapter, you learned how to design a solution using Azure functions efficiently.

You explored best practices to follow while designing a solution using Azure functions.

You also explored the pitfalls that you must avoid while building solutions for Azure

functions. The better you plan the Azure functions, the more likely you will build a highly

performant and robust solution using Azure Functions.

The following are the key takeaways from this chapter:

•	 You must follow best practices to build performant and robust Azure

functions.

•	 The best practices include selecting the right hosting plan, using the

correct programming language to fit your scenario, planning the cost

for your Azure function solutions, incorporating retry mechanisms in

the case of failures, and many more.

•	 You must avoid pitfalls such as sharing a function app service with a

large number of functions, sharing storage accounts, not processing

data in batches, and keeping different function app services for

production and development scenarios.

Chapter 20 Best Practices and Pitfalls to Avoid

515

We have come to the end of this book. In this book, you learned how to design,

build, deploy, manage, and follow best practices while designing functions for the Azure

Functions service. You learned advanced concepts such as how to use durable functions

and run functions on Azure Kubernetes Service in detail. By now, you should understand

all the necessary concepts needed to build a production-grade Azure function.

Chapter 20 Best Practices and Pitfalls to Avoid

517
© Ashirwad Satapathi and Abhishek Mishra 2021
A. Satapathi and A. Mishra, Hands-on Azure Functions with C#, https://doi.org/10.1007/978-1-4842-7122-3

Index

A
Active directory

authentication/authorization (see
Authentication/authorization)

automation, 290
features, 290
identity management, 290
objective, 290
structure, 289

Application insights/monitor
diagnostics (see Auto-diagnose issues)
logging

creation, 238
enable option, 236–237
function app, 235, 238–239
get function URL, 242
Http trigger, 240
logs, 243–244
monitoring tab, 235–236
resource, 234, 242–243
run.csx file, 241
testing code, 241
transaction search tab, 243

objectives, 234
structure, 233

Application programming interface (API)
Cosmos DB, 203–232
key permission, 84

management service (see Management
service)

serverless, 165–201
table staorage binding, 125–146

Artificial intelligence (AI), 422
Authentication/authorization

app creation, 295
assigned roles tab, 305
authentication tab, 299
authorization (function code), 309–312
credentials, 301–302
definition, 291
function app, 292, 295–296
Function.proj file, 308
get function Url, 298
grant admin consent/permissions, 304
Http trigger, 297
identity provider, 299
Microsoft identity provider, 300–301
permissions tab, 303–304
process, 292
registrations, 303
resource, 292
review creation, 293–294
roles, 291
service editor, 307
template ID, 306
testing code, 298
users tab, 305

https://doi.org/10.1007/978-1-4842-7122-3#DOI

518

Auto-diagnose issues
categories, 246
compilation error (.csx), 244, 247
execution/errors sections, 246–247
function compilation error, 248
general information section, 248
overview tab, 245
search box, 246

Azure Kubernetes Service (AKS) see
Kubernetes-based Event-Driven
Autoscaling (KEDA)

B
Bindings

attributes class
adding class, 156
class library (.NET Standard)., 155
CustomFormatBinding project, 155
FormatterBindingAttribute class, 156
NuGet package, 155
project creation, 153–154

BindingStartup class, 160
data format/conversion, 149, 163
declarative configurations, 148
execution output, 163
extension class, 159–160
FormatterModel class, 157
function project details, 152
Http trigger, 153
local.settings.json file, 162
logic class, 157–159
objectives, 148
project creation, 151
requirements, 148
scenario, 148–150
service exchange data, 147
startup class, 160

steps, 150, 164
structure, 147
template, 151–152
third-party service, 149
triggers (see Triggers/Bindings)

Blob storage bindings
cloud explorer view, 121–122
configuration, 113
containers, 109
expression, 114
file generation, 115
function.json file, 109–110
functions template, 113
GetEnvironmentVariable method, 117
integration options, 107
key process, 123
local.settings.json, 116
log message, 118
meaning, 106
outcontainer, 109–111
output binding, 108
package manager console, 115
POCO class, 116
primary objective, 112
project creation, 112
run.csx file, 110
scenarios, 106
schedule based report, 119–121
Serialize method, 118
structure, 92
storage account, 108
Visual Studio, 115

C
Cognitive services

artificial intelligence, 422
categories, 422

Index

519

document classifier function, 445–447
Feedback Analyzer

function, 435–437
objectives, 422
sentiment analysis, 428–435
serverless solution, 437–445
structure, 421
text analytics (see Text analytics)

Command-line interface (CLI), 11
core tools, 23–24
CURL request, 28
execution, 27–28
function project, 26
GET request, 28
host.json/local.settings.json files, 26
installation, 24–25
node package manager, 24
prerequisites, 23
project creation, 25
trigger, 26
worker runtime, 25

Containers
container registry

action process, 407–408
admin user, 410
authentication, 411
Docker run command, 409
function app, 408–410
HTTP-triggered function, 409
push option, 411
repositories tab, 411
resource, 405–406
subscription details, 406–407
websites, 405

control plane node, 403
hosting environment, 402
KEDA, 401
objectives, 402

operating system–level
virtualization, 402

production scenario, 403
registry information, 402
replica set, 403
serverless nodes, 404–405
structure, 401

Continuous Delivery (CD)
agent job/task, 393–394
artifact adding, 391–392
deployment process, 396
DevOps, 373–374
function app, 398
logs, 397
release creation, 395
release pipeline, 388–389, 396–397
response, 399
stage name tag, 391
task/save option, 395
template, 390
view, 398

Continuous Integration (CI)
Agent job 1 tag, 386–387
AzurePipelines, 381–382
build process, 385–386
classic editor, 380
DevOps, 373–374
GitHub repositories, 380–381
pipeline creation, 379
save option, 383–384
status views, 388
template, 383
triggers tab, 384–385

Cosmos database (DB)/functions
account creation, 207–208
aspects, 203
connection string value, 218
container, 209–212

Index

520

CRUD operations, 226
database ID/scroll down, 210–211
data explorer, 219–220
data models, 204
execution output, 221
function1.cs code, 218–219
function project, 214–215
HTTP trigger

Function2.cs code, 223–225
input binding, 222
processed items, 225–226
selection, 223

item section, 220
JSON document, 220–221
key concepts, 231
local.settings.json code, 217
new project creation, 214
objectives, 204
partition key, 213
primary key/URI, 231
project details, 216
requirements, 205
resource, 206–209
review creation, 207
SDK/interaction, 227
stored procedures, 226–231
subscription, 207
trigger, 217

D, E
Designing/building functions

APIs development, 511
bottlenecks, 509
cold-start phenomenon, 505
communication, 509

consumption plan, 502
cost planning, 508
defensive approach, 512
external service, 509
guidelines, 502
handle long-running code, 508
hosting plan, 505
IaC approach, 512
integration, 509
key concepts, 514
mitigate delay startups, 507
monitoring/debug failures, 511
objectives, 501
PaaS/IaaS service, 503
performant/robust

solution, 514
pitfalls

functions, 512
input data, 513
production/development

functions, 513
sharing/single function, 513
storage account, 514

programming language, 504
scaling aspects, 504
scenarios, 503
solution fault tolerant, 510
stateful/stateless solution, 506
structure, 501

DevOps
application lifecycle, 374–375
CI/CD pipelines, 373–374
function app, 376
objectives, 374
project creation, 377
SDLC models, 373
structure, 374

Cosmos database (DB)/functions (cont.)

Index

521

Document classifier function
destination container, 446
DocumentClassifier

function, 446
function execution, 446–447
source container, 445

Durable functions
activity function, 451
application patterns

aggregator, 456
async HTTP, 455
details, 453
fan-out/fan-in pattern, 453
function chaining

pattern, 454
human interaction, 456
monitor events, 455

benefits, 452
C#/F#/Node.js, 450
components, 451
key concepts, 467
objectives, 450
orchestrator function, 451
programming patterns, 452
project implementation

app project, 460
boilerplate code, 462
creation, 457
details, 458
empty selection, 459
function name, 461
orchestration template, 462
orchestrator client URL, 466
programming patterns, 467
type, 457
workflow, 463–466

structure, 449
workflow design, 450

F, G
FeedbackAnalyzer function, 435–437
Function apps

command line (see Command-line
interface (CLI))

objectives, 12
portal creation

add option, 21
browser process, 23
button creation, 13
click functions, 20
configuration details, 14–15
create tab, 18–19
hosting details, 15–16
login process, 12
monitoring details, 16–17
resource, 19–20
search bar, 12
subscription, 13
tags, 17–18
trigger selection, 21
Url website, 22

structure, 11
Visual Studio (see Visual Studio)

Function as a service (FaaS)
advantages/disadvantages, 5
Azure functions, 2–3
hosting option

consumption plan, 6–7
dedicated plan, 8
premium, 7

objectives, 1–2
programming languages, 2
scenarios, 8
serverless cloud services, 3
structure, 1
WebJobs vs. function, 4–5

Index

522

H
Hypertext transfer protocol (HTTP)

execution console, 131
Function1.cs, 129–130
new project creation, 127
objectives, 125–126
project details, 128
query string, 131
query string/POST parameter

value, 126
routing process

business processing, 132
execution process, 134
function1.cs, 133
Host.json, 132
navigation, 132
routePrefix parameter, 132
URL, 134–135

scenarios, 126
SQL (see Structured Query

Language (SQL))
structure, 125
table storage (see Table storage

binding)
template, 128–129
verbs/methods, 126

I, J
Infrastructure-as-a-service (IaaS), 503
Infrastructure as Code (IaC), 503, 512
Integrated development

environment (IDE), 11
deployment slots

Azure Function App
(Windows), 358

blue-green deployment, 352
Function1.cs, 354

function app, 360–361
FunctionAppDeploy project, 356
get function, 362
output window, 360
publish tab, 360
publish tag, 356
resource group, 358–359
response, 362
sidebar menu, 352–361
slot name, 353
target selection, 357
view option, 354

key concepts, 371
objectives, 340
structure, 339
Visual Studio (see Visual Studio)

Integration platform as a
service (IPaaS), 470

Internet of Things (IoT) application, 65

K
Key Vault

access policy
access policies, 285
response, 286
secret permissions, 285–286
system-assigned identity, 284–285
vault access model, 266

advantages, 265
creation, 266
networking, 266
objective, 264
portal configuration

developing function, 280
function app, 274
functions creation, 280
hosting, 274–275
HttpTrigger1 function, 281–282

Index

523

monitoring, 275–276
resource, 279
response, 284
review creation, 278
search box, 274
screen configuration, 282–283
source code, 282
tags, 277
value configuration, 278–279

resource, 270
review creation, 269
search box, 265
store secrets

current version, 273
generate/import, 271
identifier, 273
myApiKey, 272
upload option, 271–272

structure, 264
tags, 268
validation check, 269–270

Kubernetes-based Event-Driven
Autoscaling (KEDA)

authentication method, 414, 417
containers tab, 412
deployment YAML file, 417
external IP address, 418
integrations tab, 414–415
key concepts, 419
Kubernetes Service, 412
log in, 416
pod verification, 417
resource, 412
review creation, 415–416
serverless nodes, 404–405
subscription details, 413
web browser, 418

Kusto Query Language (KQL), 243

L
Logic apps workflow

advantages, 471
connectors act, 470
file content, 480
function app

configuration, 482–483
consumption, 486
creation, 481
deployment, 488
encrypted message content, 498
EncryptFunc, 492
field tab, 496
file completion, 498
Google Drive, 494–495
HTTP trigger/request, 484, 489–493
HttpTrigger1 function, 485–493
JSON payload, 490
message content, 490–491
POST URL, 497
resource tab, 483
review creation, 482
schema generation, 489
search box, 486, 491–492
send option, 497
sign in, 495
subscription tab, 486
validation check, 487

objectives, 470
portal

configuration, 473
consumption, 472
designer, 474
dynamic content menu, 477
eeview creation, 472
HTTP request, 474–476
JSON payload, 475

Index

524

POST requests, 479–480
POST URL, 478–479
reponse request, 477
resource, 473
search box, 471

structure, 470

M, N
Management service

advantages, 316
different units/project teams, 316
integration

account creation, 319–320
back-end service, 330–331
browse tab, 327
function app, 318–321, 326–329
Function.proj code, 323–324
Http trigger, 321–322
management, 324
policy, 331
project details, 318–319
query parameter, 332–334
request services, 336
resource, 317, 324
response, 334–337
subscription details, 325
tabs, 325–326
testing code, 322–323

key concepts, 337
objectives, 316
requests/responses, 316
structure, 315

Monitoring function
action group, 254
alert rule, 250, 259
condition, 251

configuration, 252–253
email selection, 256–257
functions, 250
metrics tab, 249
notifications, 254–255
review creation, 258
scale out tab, 259–260
stop web app, 252

O
One-time password (OTP), 63–90

P
Platform-as-a-service (PaaS), 168, 503

Q
Queue storage triggers/SendGrid bindings

access keys, 74
account creation, 66
application component, 64
configuration, 71–72
connection string, 75
function execution output, 77
local.settings.json file, 73–75
message creation, 76
objectives, 64
OTP mailer, 88–89
project creation, 70
queues, 68–69
resource, 65
review process, 66–67
scenarios, 64
SendGrid (see SendGrid bindings)
storage account, 66–68
structure, 63

Logic apps workflow (cont.)

Index

525

templates, 70–71
test message expiration, 76
trigger selection, 72–73

R
Runtime 1.x/2.x, 44–46

S
Scaling instances, 260–261
SendGrid bindings

account creation, 82
API keys, 84–85
contact details, 81
create option, 79
email details, 83
function execution output, 88
identity, 82
local.settings.json code, 86
manage option, 84
OTP mailer, 88–89
queue message, 87
resource creation, 78
scenarios, 77–78
search option, 78–79
sender information, 82–83
single sender creation, 83
source code, 85–86
subscription details, 80

Sentiment analysis
details, 431
feedback, 428, 434–435
Http trigger, 432
local.settings.json, 432
new project creation, 428–429
NuGet package, 432
Payload.cs, 433

POCO model, 433
template, 429–430

Serverless APIs/Proof of concepts
authorization levels, 176
Azure function, 178–179
concepts, 173
CreateProduct function, 180–183
DeleteProduct function, 186–188
GetProductById function, 190–193
GetProduct function, 188–190
local.settings.json file, 177
new project creation, 174
product class, 178
project information, 175
System.Data.SqlClient package, 178
tasks, 173–174
templates, 175
testing

CORS property, 197
CreateProduct function, 196
DeleteProduct function, 198
DeleteProduct function, 198
endpoints, 195
function project, 194
GetProductById function, 199
GetProducts function, 200
UpdateProduct function, 197

trigger type/authentication level, 176
UpdateProduct function, 184–185

Serverless solution
BlobContainerClient types, 442
blob storage, 440
cloud services, 3
details, 439
DocumentClassifier function, 443–445
GetLanguage/

UploadBlobToContainer, 442
local.settings.json file, 441

Index

526

project creation, 437
storage account’s connection, 441
template, 438
TextAnalyticsClient type, 441
timer trigger selection, 440

Software Development
Lifecycle (SDLC), 373

Structured Query Language (SQL)
architecture diagram, 167
database engine

connection string, 171
deployment option, 169
fields, 170
instance creation, 169
networking tab, 170
PaaS platform, 168
ProductInformation table, 172
resources, 171
search bar, 168

objectives, 166
operations, 168
problem statement

(Asgard Inc), 166–168
serverless (see Serverless APIs/Proof of

concepts)

T, U
Table storage bindings

connection string, 138–139
local.settings.json, 139
MathResult class, 141
meaning, 135
NuGet package, 139
prerequisite, 136
resource, 136
ResultTable, 141

source code, 140–141
storage account, 136–138
template, 143
to-do API, 141–146
ToDoRead class, 144–145

Text analytics resource
cognitive services, 424
entity recognition, 424
keys/endpoint, 428
language detection, 424
marketplace, 425
new creation, 426
phrase extraction, 424
review creation, 426
search box, 425
sentiment analysis, 424
validation process, 427
well-established algorithms, 423

Timer trigger
adding function, 100
app creation, 98–99
application insights, 96–97
blob storage (see Blob Storage

bindings)
boilerplate code, 102
configuration details, 95
consumption plan, 92
files, 101
function app creation, 94
function.json file, 102–103
hosting details, 96
integration, 103
invocation details, 105
modification, 103–104
NCrontab expression, 93
objectives, 92
portal/search bar, 94
resource, 99–100

Serverless solution (cont.)

Index

527

run.csx file, 102
scheduling application, 91–92
screen option, 100
structure, 92
tag details, 98
usage, 93
view logs, 104

Triggers/Bindings
Blob storage, 48
database, 206–221
CURD operations, 222–226
definition, 41–42
event grid, 49
functions, 43
HTTP request, 48–49
implementation process

account creation, 55
action creation, 53
adding process, 54
binding output, 58
Blob container, 61
function app, 52
integration, 57
key process, 61
message text, 60
output, 57
prerequisite, 50
queue process, 51
queue storage trigger, 55
resource creation, 52
review creation, 52–53
source code, 59
Blob Storage container, 51
tab formats, 54
test coding, 58

objectives/interaction, 42
RabbitMQ, 50
services, 42

Queue Storage, 47
structure, 41
unidirectional/bidirectional, 43
use cases, 46

V
Visual Studio

app project creation, 30
authorization level, 32
Azure function app

(Windows), 345–346
browser, 33
C# extension, 29
creation, 341–342
code configuration

application insights resource, 368
authorization level, 365
deployment status, 369
execute function, 370
FunctionApp function, 365–366
function project, 362
generation, 32
hosting plan, 367
HttpTriggerFunction, 364–370
key-value pair, 370
namespace, 364
.NET runtime, 364
programming language, 363
region/location selection, 369
resource group, 367
runtime stack, 366
storage account, 368
trigger type, 364
Windows, 367

debugging options, 33
finish tab, 349
functions

Index

528

copy option, 39
create option, 37
development workload, 34
execution output, 39
function execution, 38
integrated development

environments, 40
prerequisites, 34
project creation, 35
template details, 38
templates, 36

function app creation, 348
function1.cs option, 351
functions extension, 30
GET request, 352

HttpTrigger selection, 31
namespace, 31
new project creation, 340
output window, 350
prerequisites, 29
publish tab, 344–350
Sign in button, 343–344
subscription/view, 347
target, 345
template details, 341–343
TestHttpFunction, 31–32
URL button, 351

W, X, Y, Z
WebJobs vs. function, 4–5

Visual Studio (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Azure Functions
	Structure of the Chapter
	Objectives
	Introduction to Azure Functions
	Introduction to Serverless
	Azure WebJobs vs. Azure Functions
	Advantages and Disadvantages of Azure Functions
	Hosting Plans for Azure Functions
	Consumption Plan
	Premium Plan
	Dedicated Plan
	Use Cases for Azure Functions
	Summary

	Chapter 2: Build Your First Azure Function
	Structure of the Chapter
	Objectives
	Create Functions Using the Azure Portal
	Create Functions Locally Using the Command Line
	Create Functions Using Visual Studio Code
	Create Functions Using Visual Studio
	Summary

	Chapter 3: What Are Triggers and Bindings?
	Structure of the Chapter
	Objectives
	Introduction to Triggers and Bindings
	Supported Triggers and Bindings
	Trigger and Binding Use Cases
	Use Case: An Azure function gets triggered when a message arrives in a queue, and the processed message is put into another queue
	Use Case: A scheduled job picks up images for Blob Storage at a particular time interval and then processes and stores them back in the Blob Storage
	Use Case: An HTTP call invokes an Azure function to execute some business logic
	Use Case: An event grid can invoke an Azure function to send an email with event data
	Use Case: RabbitMQ triggers an Azure function that processes the message sent by RabbitMQ and puts the processed message in Azure Cosmos DB

	Implement Triggers and Bindings for Azure Functions
	Summary

	Chapter 4: OTP Mailer with Queue Storage Trigger and SendGrid Binding
	Structure of the Chapter
	Objectives
	Getting Started with a Queue Storage Trigger and Use Cases
	Build a Sample Application Using a Queue Storage Trigger
	Getting Started with a SendGrid Output Binding and Use Cases
	Build a Sample Application Using the SendGrid Output Binding
	Create an OTP Mailer Using a Queue Storage Trigger and SendGrid Output Binding
	Summary

	Chapter 5: Build a Report Generator with a Timer Trigger and Blob Storage Bindings
	Structure of the Chapter
	Objectives
	Getting Started with Timer Triggers and Use Cases
	Build a Sample Application Using a Timer Trigger
	Getting Started with Blob Storage Bindings and Use Cases
	Build a Sample Function Using a Blob Storage Binding
	Create a Report Generator Using a Blob Storage Binding and Timer Trigger
	Summary

	Chapter 6: To-Do API with an HTTP Trigger and a Table Storage Binding
	Structure of the Chapter
	Objectives
	Getting Started with HTTP Triggers and Use Cases
	Build a Sample Application Using an HTTP Trigger
	Routing in HTTP-Triggered Azure Functions
	Getting Started with Table Storage Bindings and Use Cases
	Build a Sample Application Using a Table Storage Binding
	Create a To-Do API with an HTTP Trigger and a Table Storage Binding
	Summary

	Chapter 7: Creating Custom Bindings for Azure Functions
	Structure of the Chapter
	Objectives
	Introduction to Custom Bindings
	Use Cases for Custom Bindings
	Build a Custom Binding for Azure Functions
	Create an Azure Function
	Implement the Binding Attribute Class
	Implement the Binding Logic Class
	Implement the Binding Extension Class
	Implement the Binding Startup Class
	Incorporate the Binding in the Azure Function

	Summary

	Chapter 8: Building Serverless APIs Using Azure Functions and Azure SQL
	Structure of the Chapter
	Objectives
	Problem Statement
	Creating an Azure SQL Database Instance in the Azure Portal
	Building Serverless APIs for the Proof of Concept
	Testing the Serverless APIs for the Proof of Concept
	Summary

	Chapter 9: Serverless API Using Azure Functions and Azure Cosmos DB
	Structure of the Chapter
	Objectives
	Introduction to Azure Cosmos DB and Its Use Cases
	Getting Started with Azure Function Cosmos DB Triggers by Building a Simple Application
	Build an HTTP-Triggered Azure Function to Perform CRUD Operations on Azure Cosmos DB Using Bindings
	Leverage the Azure Cosmos DB SDK to Interact with Cosmos DB from Azure Functions
	Summary

	Chapter 10: Enabling Application Insights and Azure Monitor
	Structure of the Chapter
	Objectives
	Enable Logging Using Application Insights
	Perform Diagnostics for Azure Functions
	Monitor Azure Functions and Create Alerts
	Restrict the Number of Scaling Instances for the Azure Function App
	Summary

	Chapter 11: Storing Function Secrets in Azure Key Vault
	Structure of the Chapter
	Objective
	Getting Started with Azure Key Vault
	Create an Azure Key Vault in the Azure Portal
	Store Secrets in Key Vault
	Create an Azure Function in the Azure Portal
	Add an Access Policy for Azure Key Vault
	Summary

	Chapter 12: Authentication and Authorization Using Azure Active Directory
	Structure of the Chapter
	Objectives
	What Is Azure Active Directory?
	What Are Authentication and Authorization?
	Implement Authentication and Authentication for Azure Functions Using Azure Active Directory
	Summary

	Chapter 13: Securing Azure Functions with API Management
	Structure of the Chapter
	Objectives
	What Is the API Management Service?
	Advantages of Using the API Management Service
	Integrate API Management with Azure Functions
	Summary

	Chapter 14: Deploying Your Azure Functions Using IDEs
	Structure of the Chapter
	Objective
	Deploy an Azure Function to Azure Using Visual Studio 2019
	What Are Deployment Slots?
	Deploy an Azure Function to Deployment Slots
	Deploy an Azure Function to Azure Using VS Code
	Summary

	Chapter 15: Deploying Your Azure Functions Using a CI/CD Pipeline with Azure DevOps
	Structure of the Chapter
	Objectives
	What Is Azure DevOps?
	Create a Project in Azure DevOps
	Create a Build Pipeline in Azure DevOps and Enable Continuous Integration
	Create a Release Pipeline in Azure DevOps and Enable Continuous Delivery
	Summary

	Chapter 16: Running Azure Functions in Containers
	Structure of the Chapter
	Objectives
	Getting Started with Containers and AKS
	What Is Serverless Kubernetes and KEDA in Azure?
	Containerize Azure Functions and Push Them to the Azure Container Registry
	Deploy the Containerized Azure Functions in AKS Using KEDA
	Summary

	Chapter 17: Adding Cognitive Capabilities to Your Azure Functions
	Structure of the Chapter
	Objective
	Getting Started with Azure Cognitive Services
	Getting Started with Azure Text Analytics
	Create an Azure Text Analytics Resource in the Azure Portal
	Build a Serverless API to Analyze Feedback Using Sentiment Analysis
	Test the FeedbackAnalyzer Function Using Postman
	Build a Language-Based Document Classifier Serverless Solution
	Test the Language-Based Document Classifier Function
	Summary

	Chapter 18: Introduction to Azure Durable Functions
	Structure of the Chapter
	Objectives
	Getting Started with Azure Durable Functions
	Benefits of Azure Durable Functions
	Application Patterns
	Fan-Out and Fan-In
	Function Chaining
	Async HTTP APIs
	Monitoring
	Human Interaction
	Aggregator

	Implement an Azure Durable Function
	Summary

	Chapter 19: Integrating Azure Functions in a Logic Apps Workflow
	Structure of the Chapter
	Objective
	Getting Started with Azure Logic Apps
	Create an Azure Logic Apps Solution in the Azure Portal
	Add Azure Functions in Logic Apps Workflows
	Summary

	Chapter 20: Best Practices and Pitfalls to Avoid
	Structure of the Chapter
	Objectives
	Design Guidelines and Best Practices
	Decide to Use Functions or Not for Your Scenario
	Choose the Correct Programing Language
	Choice of Hosting Plan
	Pick a Stateful or Stateless Solution
	Mitigate Delay Startups
	Get the Correct Bill to Fit Your Budget
	Handle Long-Running Code
	Facilitate Integration and Communication Among Other Azure and External Services
	Identify and Manage the Bottlenecks
	Make Your Solution Fault Tolerant
	Secure the APIs Developed Using Azure Functions
	Facilitate Efficient Monitoring and Debug Failures
	Incorporate DevOps Practices and Bring in an IaC Approach
	Bring in a Defensive Programming Approach

	Pitfalls to Avoid
	Sharing Functions in a Single Function App Service
	Processing the Input Data One Piece at a Time
	Hosting the Production and Development Functions in the Same Function App Service
	Sharing Storage Accounts Across Function App Services

	Summary

	Index

